Post-silicon bug detection for variation induced electrical bugs

Electrical bugs, such as those caused by crosstalk or power droop, are a growing concern due to shrinking noise margins and increasing variability. This paper introduces COBE, an electrical bug modeling technique which can be used to evaluate the effectiveness of validation tests and DfD (design-for-debug) structures for detecting these errors in post-silicon validation. COBE first uses gate-level timing details to identify critical flip-flops in which the error effects of electrical bugs are more likely to be captured. Based on RTL simulation traces, the functional tests and corresponding cycles in which these critical flip-flops incur transitions are then recorded as the potential times and locations of bug activation. These selected “bit-flips” are then analyzed through functional simulation to determine if they are propagated to an observation point for detection. Compared to the commonly employed random bit-flip injection technique, COBE provides a significantly more accurate electrical bug model by taking into account the likelihood of bug activation, in terms of both location and time, for bit-flip injection. COBE is experimentally evaluated on an Alpha 21264 processor RTL model. In our simulation-based experiments, the results show that the relative effectiveness of the tests predicted by COBE correlates very well with the tests' electrical bug detection capability, with a correlation factor of 0.921. This method is much more accurate than the random bit-flip injection technique, which has a correlation factor of 0.482.

[1]  Kwang-Ting Cheng,et al.  New challenges in delay testing of nanometer, multigigahertz designs , 2004, IEEE Design & Test of Computers.

[2]  Susmita Sur-Kolay,et al.  A modeling approach for addressing power supply switching noise related failures of integrated circuits , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[3]  Kwang-Ting Cheng,et al.  Modeling, testing, and analysis for delay defects and noise effects in deep submicron devices , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Melvin A. Breuer,et al.  New Validation and Test Problems for High Performance Deep Sub-micron VLSI Circuits , 2000, VLSI Design 2000. Wireless and Digital Imaging in the Millennium. Proceedings of 13th International Conference on VLSI Design.

[5]  Kwang-Ting Cheng,et al.  Delay testing considering power supply noise effects , 1999, International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034).

[6]  Sanjay J. Patel,et al.  Characterizing the effects of transient faults on a high-performance processor pipeline , 2004, International Conference on Dependable Systems and Networks, 2004.

[7]  Subhasish Mitra,et al.  IFRA: Instruction Footprint Recording and Analysis for post-silicon bug localization in processors , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[8]  Janak H. Patel,et al.  Segment delay faults: a new fault model , 1996, Proceedings of 14th VLSI Test Symposium.

[9]  Kwang-Ting Cheng,et al.  Delay testing considering crosstalk-induced effects , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).

[10]  Jing-Jia Liou,et al.  False-path-aware statistical timing analysis and efficient path selection for delay testing and timing validation , 2002, Proceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324).