Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control

Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.

[1]  W. Zhang,et al.  LMI criteria for robust chaos synchronization of a class of chaotic systems , 2007 .

[2]  Xiang-Jun Wu,et al.  Chaos in the fractional-order Lorenz system , 2009, Int. J. Comput. Math..

[3]  Chi-Chuan Hwang,et al.  Robust chaos synchronization of noise-perturbed chaotic systems with multiple time-delays , 2008 .

[4]  Tao Liu,et al.  A novel three-dimensional autonomous chaos system , 2009 .

[5]  K. Moore,et al.  Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[6]  S. Bhalekar,et al.  Synchronization of different fractional order chaotic systems using active control , 2010 .

[7]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[8]  Shangbo Zhou,et al.  Chaos synchronization of the fractional-order Chen's system , 2009 .

[9]  Kevin L. Moore,et al.  Analytical stability bound for delayed second-order systems with repeating poles using Lambert function W , 2002, Autom..

[10]  Xiangdong Wang,et al.  On the chaotic synchronization of Lorenz systems with time-varying lags , 2009 .

[11]  J. Yan,et al.  Robust synchronization of unified chaotic systems via sliding mode control , 2007 .

[12]  卢俊国,et al.  Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization , 2006 .

[13]  Manuel Graña,et al.  Cost of synchronizing different chaotic systems , 2002, Math. Comput. Simul..

[14]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[15]  Hadi Taghvafard,et al.  Phase and anti-phase synchronization of fractional order chaotic systems via active control , 2011 .

[16]  G. H. Erjaee,et al.  Phase synchronization in fractional differential chaotic systems , 2008 .

[17]  邵仕泉,et al.  Projective synchronization in coupled fractional order chaotic Rossler system and its control , 2007 .

[18]  Weihua Deng,et al.  Stability Analysis of Differential Equations with Time-Dependent Delay , 2006, Int. J. Bifurc. Chaos.

[19]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[20]  Daolin Xu,et al.  Synchronization of Complex Dynamical Networks with Nonlinear Inner-Coupling Functions and Time Delays , 2005 .

[21]  Zhongjun Ma,et al.  Generalized synchronization of different dimensional chaotic dynamical systems , 2007 .

[22]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[23]  Qiang Chen,et al.  Robust anti-synchronization of uncertain chaotic systems based on multiple-kernel least squares support vector machine modeling , 2011 .

[24]  Sachin Bhalekar,et al.  Chaos in fractional ordered Liu system , 2010, Comput. Math. Appl..

[25]  Reggie Brown,et al.  APPROXIMATING THE MAPPING BETWEEN SYSTEMS EXHIBITING GENERALIZED SYNCHRONIZATION , 1998 .

[26]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[27]  Aleksandar M. Spasic,et al.  Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach , 2009, Math. Comput. Model..

[28]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[29]  Sachin Bhalekar,et al.  Fractional ordered Liu system with time-delay , 2010 .

[30]  Rafael Martínez-Guerra,et al.  Partial synchronization of different chaotic oscillators using robust PID feedback , 2007 .

[31]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[32]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .

[33]  Wei Xu,et al.  Adaptive complete synchronization of the noise-perturbed two bi-directionally coupled chaotic systems with time-delay and unknown parametric mismatch , 2009, Appl. Math. Comput..

[34]  Jie Li,et al.  Chaos in the fractional order unified system and its synchronization , 2008, J. Frankl. Inst..

[35]  Weihua Deng,et al.  Synchronization of Chaotic Fractional Chen System , 2005 .

[36]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[37]  Jinde Cao,et al.  Impulsive synchronization of two nonidentical chaotic systems with time-varying delay , 2011 .

[38]  R Femat,et al.  Complete synchronizability of chaotic systems: a geometric approach. , 2003, Chaos.

[39]  Jinhu Lü,et al.  Stability analysis of linear fractional differential system with multiple time delays , 2007 .

[40]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[41]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[42]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[43]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[44]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.