Crackle: The Persistent Homology of Noise

We study the homology of simplicial complexes built via deterministic rules from a random set of vertices. In particular, we show that, depending on the randomness that generates the vertices, the homology of these complexes can either become trivial as the number $n$ of vertices grows, or can contain more and more complex structures. The different behaviours are consequences of different underlying distributions for the generation of vertices, and we consider three illustrative examples, when the vertices are sampled from Gaussian, exponential, and power-law distributions in $\R^d$. We also discuss consequences of our results for manifold learning with noisy data, describing the topological phenomena that arise in this scenario as `crackle', in analogy to audio crackle in temporal signal analysis.

[1]  K. Borsuk On the imbedding of systems of compacta in simplicial complexes , 1948 .

[2]  Alexander Russell,et al.  Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..

[3]  Nicholas Pippenger,et al.  Topological characteristics of random triangulated surfaces , 2006, Random Struct. Algorithms.

[4]  Matthew Kahle,et al.  The fundamental group of random 2-complexes , 2007, 0711.2704.

[5]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[6]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[7]  N. Wallach,et al.  Homological connectivity of random k-dimensional complexes , 2009 .

[8]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[9]  R. Meshulam,et al.  Homological connectivity of random k-dimensional complexes , 2009, Random Struct. Algorithms.

[10]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[11]  Afra Zomorodian,et al.  Computational topology , 2010 .

[12]  Elizabeth S. Meckes,et al.  Limit theorems for Betti numbers of random simplicial complexes , 2010 .

[13]  Daniel C. Cohen,et al.  The homotopical dimension of random 2-complexes , 2010, 1005.3383.

[14]  R. Adler,et al.  Persistent homology for random fields and complexes , 2010, 1003.1001.

[15]  Matthew Kahle,et al.  Random Geometric Complexes , 2009, Discret. Comput. Geom..

[16]  R. Adler,et al.  Distance Functions, Critical Points, and Topology for Some Random Complexes , 2011 .

[17]  R. Adler,et al.  PR ] 2 4 Ju l 2 01 1 Submitted to the Annals of Applied Probability DISTANCE FUNCTIONS , CRITICAL POINTS , AND TOPOLOGY FOR SOME RANDOM COMPLEXES By , 2011 .

[18]  Stephen Smale,et al.  A Topological View of Unsupervised Learning from Noisy Data , 2011, SIAM J. Comput..

[19]  Nathan Linial,et al.  Collapsibility and Vanishing of Top Homology in Random Simplicial Complexes , 2010, Discret. Comput. Geom..

[20]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .