Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia

Summary Tropical Southeast Asia, which harbors most of the Musaceae biodiversity, is one of the most species‐rich regions in the world. Its high degree of endemism is shaped by the region's tectonic and climatic history, with large differences between northern Indo‐Burma and the Malayan Archipelago. Here, we aim to find a link between the diversification and biogeography of Musaceae and geological history of the Southeast Asian subcontinent. The Musaceae family (including five Ensete, 45 Musa and one Musella species) was dated using a large phylogenetic framework encompassing 163 species from all Zingiberales families. Evolutionary patterns within Musaceae were inferred using ancestral area reconstruction and diversification rate analyses. All three Musaceae genera – Ensete, Musa and Musella – originated in northern Indo‐Burma during the early Eocene. Musa species dispersed from ‘northwest to southeast’ into Southeast Asia with only few back‐dispersals towards northern Indo‐Burma. Musaceae colonization events of the Malayan Archipelago subcontinent are clearly linked to the geological and climatic history of the region. Musa species were only able to colonize the region east of Wallace's line after the availability of emergent land from the late Miocene onwards.

[1]  J. Slik,et al.  Patterns in species richness and composition of plant families in the Malay Archipelago , 2009 .

[2]  David J. Lohman,et al.  Biogeography of the Indo-Australian Archipelago , 2011 .

[3]  N. Simmonds,et al.  The Genus Ensete in Africa , 1953 .

[4]  Ma Hong,et al.  Musella lasiocarpa var. rubribracteata (Musaceae), a New Variety from Sichuan, China , 2011 .

[5]  D. Soltis,et al.  T HE AGE AND DIVERSIFICATION OF THE ANGIOSPERMS RE - REVISITED 1 , 2010 .

[6]  E. Álvarez-Buylla,et al.  Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification. , 2013, Molecular biology and evolution.

[7]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[8]  R. Morley Origin and Evolution of Tropical Rain Forests , 2000 .

[9]  I. Lane GENERA AND GENERIC RELATIONSHIPS IN MUSACEAE , 1958 .

[10]  S. Taudien,et al.  The ITS1-5.8S-ITS2 Sequence Region in the Musaceae: Structure, Diversity and Use in Molecular Phylogeny , 2011, PloS one.

[11]  C. Bryant,et al.  Forest contraction in north equatorial Southeast Asia during the Last Glacial Period , 2010, Proceedings of the National Academy of Sciences.

[12]  S. Manchester Fruits and seeds of the middle eocene nut beds flora Clarno Formation, Oregon , 1994 .

[13]  Richard H. Ree,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[14]  De-Zhu Li,et al.  Taxonomic Notes on Wild Bananas (Musa) from China , 2002 .

[15]  Yvonne C.F. Su and Richard M.K. Saunders Evolutionary Divergence Times in the Annonaceae , 2011 .

[16]  S. Magallón,et al.  Angiosperm diversification through time. , 2009, American journal of botany.

[17]  J. Richardson,et al.  West to east dispersal and subsequent rapid diversification of the mega‐diverse genus Begonia (Begoniaceae) in the Malesian archipelago , 2012 .

[18]  K. M. Wong A Biogeographic History of Southeast Asian Rainforests , 2011 .

[19]  R. Evert,et al.  Evolution of the Angiosperms , 2013 .

[20]  W. John Kress,et al.  The Ornaments of Life: Coevolution and Conservation in the Tropics , 2013 .

[21]  W. Kress,et al.  Fossil bananas (Musaceae): Ensete oregonense sp. nov. from the Eocene of western North America and its phytogeographic significance , 1993 .

[22]  R. Hall Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations , 2002 .

[23]  H. Väre,et al.  Typification and check-list of Musa L. names (Musaceae) with nomenclatural notes , 2008 .

[24]  W. Kress,et al.  Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. , 2001, Systematic biology.

[25]  Osiris Gaona,et al.  Seed Dispersal by Bats and Birds in Forest and Disturbed Habitats of Chiapas, Mexico 1 , 1999 .

[26]  Campbell O. Webb,et al.  A LIKELIHOOD FRAMEWORK FOR INFERRING THE EVOLUTION OF GEOGRAPHIC RANGE ON PHYLOGENETIC TREES , 2005, Evolution; international journal of organic evolution.

[27]  D. Rabosky Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees , 2014, PloS one.

[28]  M. Stech,et al.  Evolution of endemism on a young tropical mountain , 2015, Nature.

[29]  L. P. Koh,et al.  Southeast Asian biodiversity: an impending disaster. , 2004, Trends in ecology & evolution.

[30]  M. Häkkinen,et al.  Musa ruiliensis (Musaceae, Section Musa ), a new species from Yunnan, China , 2014 .

[31]  Daniel L Rabosky,et al.  LIKELIHOOD METHODS FOR DETECTING TEMPORAL SHIFTS IN DIVERSIFICATION RATES , 2006, Evolution; international journal of organic evolution.

[32]  C. Cannon,et al.  Managing the future of Southeast Asia's valuable tropical rainforests : a practitioner's guide to forest genetics , 2011 .

[33]  C. Hunt,et al.  Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? , 2005 .

[34]  Z. Hua The Floras of Southern and Tropical Southeastern Yunnan Have Been Shaped by Divergent Geological Histories , 2013, PloS one.

[35]  L. Hickey,et al.  Zingiberopsis a fossil genus of the ginger family from late cretaceous to early eocene sediments of western interior north america , 1978 .

[36]  A. S. Harold,et al.  SPECIES CONCEPTS AND PHYLOGENETIC THEORY: A DEBATE , 2002, Copeia.

[37]  J. Felsenstein Phylogenies from molecular sequences: inference and reliability. , 1988, Annual review of genetics.

[38]  C. Specht,et al.  The evolutionary and biogeographic origin and diversification of the tropical monocot order zingiberales , 2006 .

[39]  D. Nwakanma,et al.  Sectional relationships in the genus Musa L. inferred from the PCR-RFLP of organelle DNA sequences , 2003, Theoretical and Applied Genetics.

[40]  J. Doležel,et al.  A multi gene sequence-based phylogeny of the Musaceae (banana) family , 2011, BMC Evolutionary Biology.

[41]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[42]  L. Maiorano,et al.  Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. , 2014, Systematic biology.

[43]  M. Häkkinen,et al.  Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa. , 2010, Molecular phylogenetics and evolution.

[44]  B. Schaal,et al.  Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR‐RFLP , 2005, Molecular ecology.

[45]  Arthur Cronquist,et al.  Floristic Regions of the World , 1978 .

[46]  G. Castillo‐Campos,et al.  Genetic diversity and population genetic structure of wild banana Musa ornata (Musaceae) in Mexico , 2013, Plant Systematics and Evolution.

[47]  K. Bremer,et al.  The age of major monocot groups inferred from 800+ rbcL sequences , 2004 .

[48]  W. Kress,et al.  Between cancer and capricorn: phylogeny, evolution and ecology of the primarily tropical Zingiberales. , 2005 .

[49]  Shuyi Zhang,et al.  Temporal and spatial patterns of seed dispersal of Musa acuminata by Cynopterus sphinx , 2007 .

[50]  H. Shaffer,et al.  Annual review of ecology, evolution, and systematics , 2003 .

[51]  T. Yang,et al.  A New Variety of Musa itinerans (Musaceae) in Taiwan , 2011 .

[52]  H. Väre,et al.  Typification and check-list of Ensete Horan. names (Musaceae) with nomenclatural notes , 2011 .

[53]  Li Xiu-xian RAPD Analysis on the Genetic Diversity of Wild and Cultivated Populations of Musella lasiocarpa , 2007 .

[54]  T. Kusky,et al.  Geochronology of the Baye Mn oxide deposit, southern Yunnan Plateau: Implications for the late Miocene to Pleistocene paleoclimatic conditions and topographic evolution , 2014 .

[55]  R. Gogoi,et al.  Musa nagalandiana sp. nov. (Musaceae) from Nagaland, northeast India , 2014 .

[56]  Mark W. Chase,et al.  Evolution of the angiosperms: calibrating the family tree , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[58]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[59]  Y. Gan,et al.  Assessment of the validity of the sections in Musa (musaceae) using AFLP. , 2002, Annals of botany.

[60]  R. Saunders,et al.  Evolutionary divergence times in the Annonaceae: evidence of a late Miocene origin of Pseuduvaria in Sundaland with subsequent diversification in New Guinea , 2009, BMC Evolutionary Biology.

[61]  R. Hall Southeast Asia’s changing palaeogeography , 2009 .

[62]  Scott Chamberlain,et al.  Interface to the Global 'Biodiversity' Information Facility'API' , 2016 .

[63]  Daniele Silvestro,et al.  A Bayesian framework to estimate diversification rates and their variation through time and space , 2011, BMC Evolutionary Biology.

[64]  C. W. Hamilton,et al.  Current practice in the use of subspecies, variety, and forma in the classification of wild plants , 1992 .

[65]  Jerrold I. Davis,et al.  Plastid genomes and deep relationships among the commelinid monocot angiosperms , 2013, Cladistics : the international journal of the Willi Hennig Society.

[66]  M. Chase,et al.  The origin and evolution of Indomalesian, Australasian and Pacific island biotas: insights from Aglaieae (Meliaceae, Sapindales) , 2008 .

[67]  D. Woodruff Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity , 2010, Biodiversity and Conservation.

[68]  C. Cannon,et al.  The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance , 2009, Proceedings of the National Academy of Sciences.

[69]  Daniel L. Rabosky,et al.  BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees , 2014 .