Synthese und Struktur von 2,6-Dicyanbicyclo[3.3.1]nona-2,6-dienen und 2,6-Dicyanbarbaralanen

Zinkiodid-katalysierte Addition von Trimethylsilylcyanid an Bicyclo[3.3.1]nonan-2,6-dion (5) ergibt das sterisch einheitliche O-silylierte Cyanhydrin 9, das mit Trichlorphosphanoxid in Pyridin zum ungesattigten Dinitril 7c umgesetzt wird. Je nach N-Bromsuccinimid-Menge entsteht bei der Bromierung des Dinitrils 7c ein Gemisch aus Monobrom- (10) und Dibromdinitril 7d oder reines Dibromdinitril 7d. Das Monobromdinitril 10 wird durch eine konzertierte Dehydrobromierung mit Natriummethanolat in Methanol in das 2,6-Dicyanbarbaralan (8c) ubergefuhrt. Dieses bildet sich fast quantitativ durch Debromierung des Dibromdinitrils 7d mit Zink/Kupfer, wahrend die Dehydrobromierung von 7d mit Natriummethanolat in Methanol 4-Brom-2,6-dicyanbarbaralan (12) ergibt. Alle Reaktionen verlaufen sehr glatt und mit hohen Ausbeuten. Durch Rontgenstrukturbestimmung der Dinitrile 7c, d und 10 sowie des 4-Brom-2,6-dicyanbarbaralans (12) wurden die exo-Konfiguration der Bromatome von 7d und 10 und erstmal geometrische Parameter von Bicyclo[3.3.1]nona-2,6-dienen und einem Barbaralan ermittelt. Synthesis and Structure of 2,6-Dicyanobicyclo[3.3.1]nona-2,6-dienes and 2,6-Dicyanobarbaralanes The zinc iodide-catalyzed addition of trimethylsilyl cyanide to bicyclo[3.3.1]nonane-2,6-dione (5) yields the sterically defined O-silylated cyanohydrin 9. Trichlorophosphane oxide in pyridine converts the latter to the unsaturated dinitrile 7c. Depending on the amount of N-bromosuccinimide used, the bromination of the dinitrile 7c affords either a mixture of the monobromo- (10) and the dibromodinitrile 7d or pure dibromodinitrile 7d. With sodium methoxide in methanol the monobromodinitrile 10 is converted via concerted dehydrobromination to 2,6-dicyanobarbaralane (8c) The latter is formed almost quantitatively on debromination of the dibromodinitrile 7d with zinc/copper reagent, while sodium methoxide yields the 4-bromo-2,6-dicyanobarbaralane (12). All reactions proceed smoothly in high yields. X-ray structural parameters for bicyclo[3.3.1]nona-2,6-dienes (i. e. 7c, d and 10) and a barbaralane (i. e. 12) have for the first time become available.

[1]  A. Freyer,et al.  The degenerate Cope Rearrangement in 2,6‐Barbaralanedicarbonitrile , 1984 .

[2]  J. Henkel,et al.  Efficient synthesis of barbaralane , 1983 .

[3]  R. N. Nandi,et al.  Microwave structures of cyanocyclopropane and cyclopropylacetylene. Effects of cyclopropyl .pi. conjugation on structure , 1983 .

[4]  B. K. Carpenter Heavy-atom tunneling as the dominant pathway in a solution-phase reaction? Bond shift in antiaromatic annulenes , 1983 .

[5]  H. Quast,et al.  Synthesis of some 3,7-dicyano-1,5-dimethylsemibullvalenes , 1983 .

[6]  J. Christ,et al.  Crystal and molecular structure and the cope activation barriers of some dicyano-1,5-dimethylsemibullvalenes , 1983 .

[7]  U. Thewalt,et al.  Redox Reactions of a Ferrio-arsane and -stibane with Chlorophosphanes: Synthesis of a Diferrioarsonium Chloride and a Stiborane with Asymmetric Iron Atoms[1]† , 1982 .

[8]  J. Christ,et al.  2,6-dicyano-1,5-dimethylsemibullvalene as a probe for homoaromatic molecules of the Dewar-Hoffman type , 1982 .

[9]  S. Hünig,et al.  Trimethylsilycyanid als Umpolungsreagens, VIII. Derivate des 2‐(Trimethylsiloxy)‐2‐propennitrils. Synthesen und allgemeine Eigenschaften , 1982 .

[10]  H. Quast,et al.  Dreigliedrige Heterocyclen Ein Diazaphosphiridin‐3‐oxid , 1981 .

[11]  H. Quast,et al.  2,6‐Barbaralane Dicarbonitrile: A Probe for Dewar‐Hoffmann‐Type Homoaromatic Molecules , 1981 .

[12]  F. H. Allen,et al.  The geometry of small rings. I. Substituent-induced bond-length asymmetry in cyclopropane , 1980 .

[13]  S. Abramson,et al.  The synthesis of barbaralyl systems via bicyclic[3.2.2] irontricarbonyl cations , 1980 .

[14]  J. F. Liebman,et al.  Substituent effects on strain energies , 1979 .

[15]  Sujit Banerjee,et al.  Towards a complete account of the exchange chemistry of a diastereotopic proton pair. I. Base-catalyzed enolization-exchange of 2-norbornanones; on the rate controlling factors , 1978 .

[16]  L. Paquette The Realities of Extended Homoaromaticity , 1978 .

[17]  L. A. Paquette Die charakteristischen Eigenschaften homoaromatischer Systeme , 1978 .

[18]  H. Musso,et al.  Asterane, XIV. Versuche zum Nachweis und zur Stabilität des Triasteryl‐Kations , 1977 .

[19]  H. Kessler,et al.  2,6-SUBSTITUTED HOMOTROPILIDENES. INFLUENCE OF SUBSTITUENTS ON VALENCE TOPOMERIZATION , 1976 .

[20]  S. Tomoda,et al.  Reversible charge control. Barbaralyl-bicyclo[3.2.2]nonatrienyl example , 1975 .

[21]  J. Meinwald,et al.  Determination of the fluxional barrier in semibullvalene by proton and carbon-13 nuclear magnetic resonance spectroscopy , 1974 .

[22]  L. Paquette,et al.  Cope rearrangement of 9-methylenebarbaralane. Complete line shape analysis , 1973 .

[23]  T. Mukai,et al.  β-(2,4,6-Cycloheptatrien-1-yl)ethylcarbene. The Synthesis of 9-Substituted Bicyclo[4.2.1]nona-2,4,7-trienes and 9-Substituted Barbaralanes , 1972 .

[24]  J. Press,et al.  Synthesis and chemistry of bicyclo[4.2.1-]nona-2,4,7-trien-9-one and of bicyclo[4.2.1]nona-2,4,7-trien-9-yl intermediates , 1972 .

[25]  T. Kunii,et al.  The Cope Rearrangement of Bridged Homotropilidenes Studied by MINDO Methods , 1972 .

[26]  L. Paquette,et al.  Bishomoconjugative .alpha.-halo ketone rearrangement as a route to bicyclo[4.2.1]nona-2,4,7-trien-9-one and barbaralone derivatives , 1972 .

[27]  M. Dewar,et al.  Ground states of .sigma.-bonded molecules. XIV. Application of energy partitioning to the MINDO [modified intermediate neglect of differential overlap] /2 method and a study of the Cope rearrangement , 1971 .

[28]  R. Hoffmann,et al.  Cope rearrangement revisited , 1971 .

[29]  P. Schleyer,et al.  GROUND-STATE SUBSTITUENT EFFECTS. I. DEUTERIUM AND METHYL. , 1971 .

[30]  H. Musso,et al.  Asterane, V. Studien in der Tricyclo[3.3.1.02.8]nonan‐Reihe , 1970 .

[31]  J. Grutzner,et al.  Direct observation of the degenerate 9-methyl-9-barbaralyl cation , 1970 .

[32]  S. Winstein Centenary Lecture. Nonclassical ions and homoaromaticity , 1969 .

[33]  J. Schaefer,et al.  Bicyclo[3.3.1]nonanes. IV. Dehydration of the bicyclo[3.3.1]nonane-2,6-diols , 1968 .

[34]  J. Daub,et al.  Valenzisomerisierungen von C9H10-Kohlenwasserstoffen , 1968 .

[35]  P. Schleyer,et al.  Valence Isomerizations of C9H10 Hydrocarbons , 1968 .

[36]  M. J. Goldstein,et al.  Rearrangements of bicyclo[3.2.2]nonatrienes , 1967 .

[37]  G. Schröder,et al.  Neues aus der Bullvalen‐Chemie , 1967 .

[38]  G. Schröder,et al.  Recent Chemistry of Bullvalene , 1967 .

[39]  H. Musso,et al.  Umlagerungen im Triasteran‐System , 1967 .

[40]  H. Musso,et al.  Rearrangements of the Triasterane System , 1967 .

[41]  W. Doering,et al.  A rational synthesis of bullvalene barbaralone and derivatives; bullvalone☆ , 1967 .

[42]  H. Stetter,et al.  Über Verbindungen mit Urotropin‐Struktur, XXIII1) Synthese des 2‐Thia‐ adamantans , 1962 .

[43]  S. Winstein,et al.  Homoconjugation and Homoaromaticity. IV. The Trishomocyclopropenyl Cation. A Homoaromatic Structure1,2 , 1961 .

[44]  S. Winstein,et al.  HOMO-AROMATIC STRUCTURES , 1959 .

[45]  E. Corey,et al.  Stereoelectronic Control in Enolization-Ketonization Reactions1 , 1956 .

[46]  H. Meerwein,et al.  Über bicyclische und polycyclische Verbindungen mit Brückenbindung. Über das Bicyclo-[1,3,3]-nonan und seine Abkömmlinge , 1922 .

[47]  H. Meerwein,et al.  Über eine Synthese von Abkömmlingen des Bicyclo‐[1,3,3]‐nonans , 1913 .