Hyperasymptotics and the Linear Boundary Layer Problem: Why Asymptotic Series Diverge

The simplest problem with boundary layers, $\epsilon^{2} u_{xx} - u = - f(x)$, is used to illustrate (i) why the perturbation series in powers of $\epsilon$ is asymptotic but divergent, (ii) why the optimally truncated expansion is ``superasymptotic'' in the sense that that error is proportional to $\exp(- \mbox{[constant]} / \epsilon)$, and (iii) how to obtain an improved "hyperasymptotic" approximation.

[1]  J. Boyd Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics , 1998 .

[2]  J. Boyd,et al.  A Sturm–Liouville Eigenproblem of the Fourth Kind: A Critical Latitude with Equatorial Trapping , 1998 .

[3]  John P. Boyd Fourier embedded domain methods: extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and C∞ , 2005, Appl. Math. Comput..

[4]  Time-marching on the slow manifold: The relationship between the nonlinear Galerkin method and implicit timestepping algorithms , 1994 .

[5]  R. Paris,et al.  Asymptotics and Mellin-Barnes Integrals , 2001 .

[6]  John P. Boyd,et al.  Shafer (Hermite-Padé) approximants for functions with exponentially small imaginary part with application to equatorial waves with critical latitude , 2002, Appl. Math. Comput..

[7]  M. Kruskal,et al.  Nonexistence of small-amplitude breather solutions in phi4 theory. , 1987, Physical review letters.

[8]  Jean Zinn-Justin,et al.  Large order behaviour of perturbation theory , 1990, Quantum Field Theory and Critical Phenomena.

[9]  Ernst Joachim Weniger,et al.  Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989 .

[10]  Evans M. Harrell The Complex WKB Method for Nonlinear Equations 1: Linear Theory (Victor P. Maslov) , 1996, SIAM Rev..

[11]  S. Orszag,et al.  Development of turbulence models for shear flows by a double expansion technique , 1992 .

[12]  M. J. Lighthill Introduction to Fourier Analysis and Generalised Functions: The theory of generalised functions and their Fourier transforms , 1958 .

[13]  Harvey Segur,et al.  Asymptotics beyond all orders , 1987 .

[14]  Eric Lombardi,et al.  Oscillatory Integrals and Phenomena Beyond all Algebraic Orders: with Applications to Homoclinic Orbits in Reversible Systems , 2000 .

[15]  Beyond-all-orders instability in the equatorial Kelvin wave , 2001 .

[16]  John P. Boyd,et al.  Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions , 2003 .

[17]  Vimal Singh,et al.  Perturbation methods , 1991 .

[18]  P. Hartman Ordinary Differential Equations , 1965 .

[19]  R. Dingle Asymptotic expansions : their derivation and interpretation , 1975 .

[20]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[21]  John P. Boyd,et al.  The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series , 1999 .

[22]  P. Zweifel Advanced Mathematical Methods for Scientists and Engineers , 1980 .

[23]  Jean Ecalle,et al.  Les algébres de fonctions résurgentes , 1981 .

[24]  Asymptotics beyond all orders for a low Reynolds number flow , 1996 .

[25]  Introduction to Asymptotics: A Treatment using Nonstandard Analysis , 1997 .

[26]  V. Kowalenko,et al.  Generalised Euler-Jacobi Inversion Formula and Asymptotics Beyond All Orders , 1995 .

[27]  David Z. Goodson,et al.  Summation of asymptotic expansions of multiple-valued functions using algebraic approximants: Application to anharmonic oscillators , 1998 .

[28]  Mary Catherine A. Kropinski,et al.  A Hybrid Asymptotic-Numerical Method for Low Reynolds Number Flows Past a Cylindrical Body , 1995, SIAM J. Appl. Math..

[29]  Victor P. Maslov,et al.  The complex WKB method for nonlinear equations I , 1994 .

[30]  B. I︠u︡. Sternin,et al.  Borel-Laplace Transform and Asymptotic Theory: Introduction to Resurgent Analysis , 1995 .

[31]  J. Boyd A Comparison of Numerical Algorithms for Fourier Extension of the First, Second, and Third Kinds , 2002 .

[32]  Michael V Berry,et al.  Asymptotics, Superasymptotics, Hyperasymptotics... , 1991 .