Hyperasymptotics and the Linear Boundary Layer Problem: Why Asymptotic Series Diverge
暂无分享,去创建一个
[1] J. Boyd. Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics , 1998 .
[2] J. Boyd,et al. A Sturm–Liouville Eigenproblem of the Fourth Kind: A Critical Latitude with Equatorial Trapping , 1998 .
[3] John P. Boyd. Fourier embedded domain methods: extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and C∞ , 2005, Appl. Math. Comput..
[5] R. Paris,et al. Asymptotics and Mellin-Barnes Integrals , 2001 .
[6] John P. Boyd,et al. Shafer (Hermite-Padé) approximants for functions with exponentially small imaginary part with application to equatorial waves with critical latitude , 2002, Appl. Math. Comput..
[7] M. Kruskal,et al. Nonexistence of small-amplitude breather solutions in phi4 theory. , 1987, Physical review letters.
[8] Jean Zinn-Justin,et al. Large order behaviour of perturbation theory , 1990, Quantum Field Theory and Critical Phenomena.
[9] Ernst Joachim Weniger,et al. Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989 .
[10] Evans M. Harrell. The Complex WKB Method for Nonlinear Equations 1: Linear Theory (Victor P. Maslov) , 1996, SIAM Rev..
[11] S. Orszag,et al. Development of turbulence models for shear flows by a double expansion technique , 1992 .
[12] M. J. Lighthill. Introduction to Fourier Analysis and Generalised Functions: The theory of generalised functions and their Fourier transforms , 1958 .
[13] Harvey Segur,et al. Asymptotics beyond all orders , 1987 .
[14] Eric Lombardi,et al. Oscillatory Integrals and Phenomena Beyond all Algebraic Orders: with Applications to Homoclinic Orbits in Reversible Systems , 2000 .
[15] Beyond-all-orders instability in the equatorial Kelvin wave , 2001 .
[16] John P. Boyd,et al. Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions , 2003 .
[17] Vimal Singh,et al. Perturbation methods , 1991 .
[18] P. Hartman. Ordinary Differential Equations , 1965 .
[19] R. Dingle. Asymptotic expansions : their derivation and interpretation , 1975 .
[20] R. Temam,et al. Nonlinear Galerkin methods , 1989 .
[21] John P. Boyd,et al. The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series , 1999 .
[22] P. Zweifel. Advanced Mathematical Methods for Scientists and Engineers , 1980 .
[23] Jean Ecalle,et al. Les algébres de fonctions résurgentes , 1981 .
[24] Asymptotics beyond all orders for a low Reynolds number flow , 1996 .
[25] Introduction to Asymptotics: A Treatment using Nonstandard Analysis , 1997 .
[26] V. Kowalenko,et al. Generalised Euler-Jacobi Inversion Formula and Asymptotics Beyond All Orders , 1995 .
[27] David Z. Goodson,et al. Summation of asymptotic expansions of multiple-valued functions using algebraic approximants: Application to anharmonic oscillators , 1998 .
[28] Mary Catherine A. Kropinski,et al. A Hybrid Asymptotic-Numerical Method for Low Reynolds Number Flows Past a Cylindrical Body , 1995, SIAM J. Appl. Math..
[29] Victor P. Maslov,et al. The complex WKB method for nonlinear equations I , 1994 .
[30] B. I︠u︡. Sternin,et al. Borel-Laplace Transform and Asymptotic Theory: Introduction to Resurgent Analysis , 1995 .
[31] J. Boyd. A Comparison of Numerical Algorithms for Fourier Extension of the First, Second, and Third Kinds , 2002 .
[32] Michael V Berry,et al. Asymptotics, Superasymptotics, Hyperasymptotics... , 1991 .