EBSD investigation of microstructure evolution during cryogenic rolling of type 321 metastable austenitic steel

[1]  A. Odeshi,et al.  Austenitic Reversion of Cryo-rolled Ti-Stabilized Austenitic Stainless Steel: High-Resolution EBSD Investigation , 2018, Journal of Materials Engineering and Performance.

[2]  T. Sawaguchi,et al.  Twinning of deformation-induced ε-martensite in Fe-30Mn-6Si shape memory alloy , 2018 .

[3]  L. Du,et al.  Microstructural evolution and recrystallization behavior of cold rolled austenitic stainless steel with dual phase microstructure during isothermal annealing , 2018 .

[4]  B. Mordyuk,et al.  Influence of microstructural features and deformation-induced martensite on hardening of stainless steel by cryogenic ultrasonic impact treatment , 2017, Surface and Coatings Technology.

[5]  S. Ghosh,et al.  Effect of cryogenic deformation on microstructure and mechanical properties of 304 austenitic stainless steel , 2017 .

[6]  A. Odeshi,et al.  Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel , 2017, Metallurgical and Materials Transactions A.

[7]  C. Haase,et al.  Microstructure and texture evolution of a high manganese TWIP steel during cryo-rolling , 2017 .

[8]  K. Zilnyk,et al.  Strain partitioning and texture evolution during cold rolling of AISI 201 austenitic stainless steel , 2017 .

[9]  R. Kaibyshev,et al.  Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling , 2017 .

[10]  K. Tsuchiya,et al.  Comparison of Reverse Transformation Behaviors of Thermally- and Deformation-Induced ε-Martensite in Fe-28Mn-6Si-5Cr Shape Memory Alloy , 2016 .

[11]  L. P. Karjalainen,et al.  Effects of reversion and recrystallization on microstructure and mechanical properties of Nb-alloyed low-Ni high-Mn austenitic stainless steels , 2016 .

[12]  A. Ngan,et al.  The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel , 2015 .

[13]  R. Kumar,et al.  Effect of cryorolling on the microstructure and tensile properties of bulk nano-austenitic stainless steel , 2015 .

[14]  J. Szpunar,et al.  Effect of thermo-mechanical processing on texture evolution in austenitic stainless steel 316L , 2014 .

[15]  H. Kokawa,et al.  Development of grain structure during friction-stir welding of Cu–30Zn brass , 2014 .

[16]  D. C. Aken,et al.  Crystallographic Orientation of the ε → α′ Martensitic (Athermal) Transformation in a FeMnAlSi Steel , 2014, Metallurgical and Materials Transactions A.

[17]  A. Borgenstam,et al.  Effect of carbon content on variant pairing of martensite in Fe–C alloys , 2012 .

[18]  Xin Sun,et al.  Twinning and martensite in a 304 austenitic stainless steel , 2012 .

[19]  K. Tsuzaki,et al.  Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel , 2012 .

[20]  Arpan Das,et al.  Morphologies and characteristics of deformation induced martensite during low cycle fatigue behaviour of austenitic stainless steel , 2011 .

[21]  H. Kokawa,et al.  Structural response of superaustenitic stainless steel to friction stir welding , 2011 .

[22]  L. P. Karjalainen,et al.  Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe–16Cr–10Ni alloy: The effect of interstitial alloying elements and degree of austenite stability on phase reversion , 2010 .

[23]  A. Belyakov,et al.  Changes in misorientations of grain boundaries in titanium during deformation , 2010 .

[24]  Tae-Ho Lee,et al.  Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels , 2010 .

[25]  G. Gottstein,et al.  Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe–Mn–C alloy , 2010 .

[26]  L. P. Karjalainen,et al.  Microstructure evolution in nano/submicron grained AISI 301LN stainless steel , 2010 .

[27]  T. Tsuchiyama,et al.  Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels , 2010 .

[28]  A. Kermanpur,et al.  Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing , 2009 .

[29]  A. Kermanpur,et al.  Formation of Nanocrystalline Structure in 301 Stainless Steel Produced by Martensite Treatment , 2009 .

[30]  Joseph K. L. Lai,et al.  Recent developments in stainless steels , 2009 .

[31]  L. Kestens,et al.  Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel , 2009 .

[32]  L. P. Karjalainen,et al.  Enhanced Mechanical Properties through Reversion in Metastable Austenitic Stainless Steels , 2009 .

[33]  Vadim V. Silberschmidt,et al.  Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel , 2008 .

[34]  H. Cerjak,et al.  Martensite laths in creep resistant martensitic 9-12% Cr steels : Calculation and measurement of misorientations , 2007 .

[35]  L. P. Karjalainen,et al.  Hall–Petch Behavior in Ultra-Fine-Grained AISI 301LN Stainless Steel , 2007 .

[36]  S. Takaki,et al.  Deformation twinning in high-nitrogen austenitic stainless steel , 2007 .

[37]  B. Bolle,et al.  Analysis of the γ–ɛ–α′ variant selection induced by 10% plastic deformation in 304 stainless steel at −60 °C , 2007 .

[38]  Ashutosh Kumar Singh,et al.  Deformation-induced transformation textures in metastable austenitic stainless steel , 2006 .

[39]  P. Ferreira,et al.  Influence of annealing treatment on the formation of nano/submicron grain size AISI 301 Austenitic stainless steels , 2006 .

[40]  Michel Humbert,et al.  Electron backscattered diffraction study of ε/α′ martensitic variants induced by plastic deformation in 304 stainless steel , 2005 .

[41]  Fucheng Zhang,et al.  Microstructure of 1Cr18Ni9Ti stainless steel by cryogenic compression deformation and annealing , 2005 .

[42]  D. Matlock,et al.  Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction , 2004 .

[43]  Dorte Juul Jensen,et al.  Development of microstructure in FCC metals during cold work , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  C. M. Wayman,et al.  On secondary variants formed at intersections of ϵ martensite variants , 1992 .

[45]  S. Takaki,et al.  Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels. , 1991 .

[46]  S. Takaki,et al.  Optimal Chemical Composition in Fe-Cr-Ni Alloys for Ultra Grain Refining by Reversion from Deformation Induced Martensite. , 1991 .

[47]  J. Hirsch,et al.  Overview No. 76: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. Metals—III. The influence of slip inhomogeneities and twinning , 1988 .

[48]  Jürgen Hirsch,et al.  Overview no. 76: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals—I. Description of rolling texture development in homogeneous CuZn alloys , 1988 .

[49]  M. Loretto,et al.  Direct observations of martensite nuclei in stainless steel , 1979 .

[50]  Taiji Suzuki,et al.  An experimental study of the martensite nucleation and growth in 18/8 stainless steel , 1977 .

[51]  Gregory B Olson,et al.  Kinetics of strain-induced martensitic nucleation , 1975 .

[52]  L. Teutonico THE DISSOCIATION OF DISLOCATIONS IN THE FACE-CENTERED CUBIC STRUCTURE , 1963 .

[53]  Seyed Morteza Sabet,et al.  Electron backscatter and X-ray diffraction studies on the deformation and annealing textures of austenitic stainless steel 310S , 2017 .

[54]  L. Krüger,et al.  Interplay of microstructure defects in austenitic steel with medium stacking fault energy , 2016 .

[55]  F. Frank,et al.  On deformation by twinning , 1955 .