Shape index, Brouwer degree and Poincar\'e-Hopf theorem

In this paper we study the relationship of the Brouwer degree of a vector field with the dynamics of the induced flow. Analogous relations are studied for the index of a vector field. We obtain new forms of the Poincar% \'{e}-Hopf theorem and of the Borsuk and Hirsch antipodal theorems. As an application, we calculate the Brouwer degree of the vector field of the Lorenz equations in isolating blocks of the Lorenz strange set.

[1]  Johannes Rau The tropical Poincaré-Hopf theorem , 2020, J. Comb. Theory A.

[2]  H. Barge Čech cohomology, homoclinic trajectories and robustness of non-saddle sets , 2020, Discrete & Continuous Dynamical Systems.

[3]  J. Sanjurjo,et al.  Dissonant points and the region of influence of non-saddle sets , 2018, 1803.02273.

[4]  J. Sanjurjo,et al.  Bifurcations and Attractor-Repeller Splittings of Non-Saddle Sets , 2018 .

[5]  Mark Grant,et al.  The Poincaré-Hopf Theorem for line fields revisited , 2016, 1612.04073.

[6]  H. Barge Regular blocks and Conley index of isolated invariant continua in surfaces , 2016, 1802.05578.

[7]  J. Sanjurjo,et al.  Unstable manifold, Conley index and fixed points of flows , 2014 .

[8]  Chong Li Generalized Poincaré–Hopf theorem and application to nonlinear elliptic problem , 2014 .

[9]  D. Trotman,et al.  Poincaré–Hopf theorems on singular spaces , 2014 .

[10]  S. Munao,et al.  The Poincaré-Hopf theorem for relative braid classes , 2012, 1204.0642.

[11]  J. J. S. Gabites Aplicaciones de topología geométrica y algebraica al estudio de flujos continuos en variedades , 2011 .

[12]  Enrique Outerelo Domínguez,et al.  Mapping Degree Theory , 2009 .

[13]  Antonio Giraldo,et al.  Singular Continuations of Attractors , 2009, SIAM J. Appl. Dyn. Syst..

[14]  J. Sanjurjo,et al.  Global topological properties of the Hopf bifurcation , 2007 .

[15]  Miriam Leah Zelditch,et al.  Theory of shape , 2004 .

[16]  J. Sanjurjo Morse equations and unstable manifolds of isolated invariant sets , 2003 .

[17]  M. Fotouhi,et al.  ON THE POINCARE INDEX OF ISOLATED INVARIANT SETS , 2001, math/0102143.

[18]  Lev Kapitanski,et al.  Shape and Morse theory of attractors , 2000 .

[19]  J. Sanjurjo Multihomotopy, Čech Spaces of loops and Shape Groups , 1994 .

[20]  C. McCord On the Hopf index and the Conley index , 1989 .

[21]  J. Robbin,et al.  Dynamical systems, shape theory and the Conley index , 1988, Ergodic Theory and Dynamical Systems.

[22]  Roman Srzednicki,et al.  On rest points of dynamical systems , 1985 .

[23]  D. Salamon CONNECTED SIMPLE SYSTEMS AND THE CONLEY INDEX OF ISOLATED INVARIANT SETS , 1985 .

[24]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[25]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[26]  S. Mardešić Shape Theory: The Inverse System Approach , 1982 .

[27]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[28]  J. Dydak Shape Theory: An Introduction , 1978 .

[29]  C. Conley,et al.  Isolated invariant sets and isolating blocks , 1971 .

[30]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[31]  T. Ważewski,et al.  Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires , 1948 .

[32]  R. Ho Algebraic Topology , 2022 .