Spectrum and combinatorics of Ramanujan triangle complexes

Ramanujan graphs have extremal spectral properties, which imply a remarkable combinatorial behavior. In this paper we compute the high dimensional Hodge-Laplace spectrum of Ramanujan triangle complexes, and show that it implies a combinatorial expansion property, and a pseudo-randomness result. For this purpose we prove a Cheeger-type inequality and a mixing lemma of independent interest.

[1]  W. Li,et al.  The Zeta Functions of Complexes from $\Sp(4)$ , 2011, 1109.3854.

[2]  Roy Meshulam,et al.  A Moore bound for simplicial complexes , 2007 .

[3]  W. Li,et al.  The zeta functions of complexes from PGL(3): A representation-theoretic approach , 2008, 0809.1401.

[4]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[5]  Alexander Lubotzky,et al.  Explicit constructions of Ramanujan complexes of type , 2005, Eur. J. Comb..

[6]  A. Nilli On the second eigenvalue of a graph , 1991 .

[7]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[8]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[9]  M. Murty Ramanujan Graphs , 1965 .

[10]  W. Li On negative eigenvalues of regular graphs , 2001 .

[11]  M. Papikian On eigenvalues of p-adic curvature , 2008, 0802.1571.

[12]  Alexander Lubotzky,et al.  Ramanujan complexes and high dimensional expanders , 2012, 1301.1028.

[13]  Compositio Mathematica,et al.  The unramified principal series of $p$-adic groups. I. The spherical function , 1980 .

[14]  Noga Alon,et al.  On the second eigenvalue of a graph , 1991, Discret. Math..

[15]  Alexander Lubotzky,et al.  Expander graphs in pure and applied mathematics , 2011, 1105.2389.

[16]  Anna Gundert,et al.  On laplacians of random complexes , 2012, SoCG '12.

[17]  Ori Parzanchevski,et al.  Isoperimetric inequalities in simplicial complexes , 2012, Comb..

[18]  W. Casselman,et al.  On a $p$-adic vanishing theorem of Garland , 1974 .

[19]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[20]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[21]  Anna Gundert,et al.  Higher Dimensional Cheeger Inequalities , 2014, SoCG.

[22]  B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .

[23]  Ming-Hsuan Kang,et al.  Zeta Functions of Complexes Arising from PGL(3) , 2008, 0804.2305.

[24]  Rostislav I. Grigorchuk,et al.  On the asymptotic spectrum of random walks on infinite families of graphs , 1997 .

[25]  Anna Gundert,et al.  On expansion and spectral properties of simplicial complexes , 2013 .

[26]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[27]  Marko Tadić,et al.  Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case) , 1986 .

[28]  P. Sarnak Some Applications of Modular Forms , 1990 .

[29]  Cristina Ballantine,et al.  Ramanujan Type Buildings , 2000, Canadian Journal of Mathematics.

[30]  Alexander Lubotzky,et al.  Mixing Properties and the Chromatic Number of Ramanujan Complexes , 2014, 1407.7700.

[31]  Howard Garland,et al.  p-Adic Curvature and the Cohomology of Discrete Subgroups of p-Adic Groups , 1973 .

[32]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[33]  A. Borel Admissible representations of a semi-simple group over a local field with vectors fixed under an iwahori subgroup , 1976 .