Topological characterization of S[B] systems: From data to models of complexity

In this paper we propose a methodology for deriving a model of a complex system by exploiting the information extracted from Topological Data Analysis. Central to our approach is the S[B] paradigm in which a complex system is represented by a two-level model. One level, the structural S one, is derived using the newly introduced quantitative concept of Persistent Entropy. The other level, the behavioral B one, is characterized by a network of interacting computational agents described by a Higher Dimensional Automaton. The methodology yields also a representation of the evolution of the derived two-level model as a Persistent Entropy Automaton. The presented methodology is applied to a real case study, the Idiotypic Network of the mammal immune system.

[1]  Marco Bernardo,et al.  Encoding Timed Models as Uniform Labeled Transition Systems , 2013, EPEW.

[2]  D. L. Stein,et al.  Nature Versus Nurture in Complex and Not-So-Complex Systems , 2014, 1405.7715.

[3]  Filippo Castiglione,et al.  Immune System Modelling and Simulation , 2015 .

[4]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[5]  Chunxiao Xing,et al.  Modeling and Verifying Concurrent Programs with Finite Chu Spaces , 2010, Journal of Computer Science and Technology.

[6]  S. Lakshmivarahan,et al.  Symmetry in Interconnection Networks Based on Cayley Graphs of Permutation Groups: A Survey , 1993, Parallel Comput..

[7]  Mohamed Fayad,et al.  Aspects of software adaptability , 1996, CACM.

[8]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[9]  P. Sloot,et al.  UvA-DARE ( Digital Academic Repository ) HIV reservoirs and immune surveillance evasion cause the failure of structured treatment interruptions : a computational study , 2012 .

[10]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[11]  Rocío González-Díaz,et al.  An entropy-based persistence barcode , 2015, Pattern Recognit..

[12]  Rocco De Nicola,et al.  A uniform framework for modeling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences , 2013, Inf. Comput..

[13]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[14]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[15]  Vaughan R. Pratt,et al.  Higher dimensional automata revisited , 2000, Mathematical Structures in Computer Science.

[16]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[17]  William J. Stewart,et al.  Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling , 2009 .

[18]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[19]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[20]  Yassine Lakhnech,et al.  Hierarchical Automata as Model for Statecharts , 1997, ASIAN.

[21]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[22]  Emanuela Merelli,et al.  Non locality, Topology, Formal languages: New Global Tools to Handle Large Data Sets , 2013, ICCS.

[23]  L. Ivanov,et al.  Automatic generation of Chu space model expressions for verification , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[24]  Jason Brownlee,et al.  Complex adaptive systems , 2007 .

[25]  F Castiglione,et al.  Design and implementation of an immune system simulator , 2001, Comput. Biol. Medicine.

[26]  David E. Crowley,et al.  Topological data analysis of Escherichia coli O157:H7 and non-O157 survival in soils , 2014, Front. Cell. Infect. Microbiol..

[27]  Emanuela Merelli,et al.  Topology driven modeling: the IS metaphor , 2014, Natural Computing.

[28]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[29]  G. Hoffmann A theory of regulation and self‐nonself discrimination in an immune network , 1975, European journal of immunology.

[30]  N K Jerne,et al.  Towards a network theory of the immune system. , 1973, Annales d'immunologie.

[31]  Vineet Gupta,et al.  Chu spaces: a model of concurrency , 1994 .

[32]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[33]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[34]  Lubomir Ivanov,et al.  Modeling Non-Iterated System Behavior with Chu Spaces , 2008, CDES.

[35]  G. Parisi A simple model for the immune network. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[37]  Anastasios Xepapadeas,et al.  Modeling Complex Systems , 2010 .

[38]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[39]  G. Petri,et al.  Homological scaffolds of brain functional networks , 2014, Journal of The Royal Society Interface.

[40]  Mikael Vejdemo-Johansson,et al.  javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.

[41]  Vaughan R. Pratt,et al.  Modeling concurrency with geometry , 1991, POPL '91.

[42]  Glynn Winskel,et al.  Event Structure Semantics for CCS and Related Languages , 1982, ICALP.

[43]  Jerne Nk Towards a network theory of the immune system. , 1974 .

[44]  Leonidas J. Guibas,et al.  Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..

[45]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[46]  Nicola Paoletti,et al.  Adaptability checking in complex systems , 2016, Sci. Comput. Program..

[47]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[48]  Edwin R. Hancock,et al.  Graph characterizations from von Neumann entropy , 2012, Pattern Recognit. Lett..

[49]  G. Carlsson,et al.  Topology of viral evolution , 2013, Proceedings of the National Academy of Sciences.

[50]  Francesco Vaccarino,et al.  Topological Strata of Weighted Complex Networks , 2013, PloS one.

[51]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[52]  J. Jonsson Simplicial complexes of graphs , 2007 .

[53]  Emanuela Merelli,et al.  jHoles: A Tool for Understanding Biological Complex Networks via Clique Weight Rank Persistent Homology , 2014, CS2Bio.

[54]  NICHOLAS R. JENNINGS,et al.  An agent-based approach for building complex software systems , 2001, CACM.