A fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity
暂无分享,去创建一个
Sergio Caucao | Gabriel N. Gatica | Ricardo Oyarzúa | Ivana Sebestová | G. Gatica | Ricardo Oyarzúa | Sergio Caucao | I. Sebestová
[1] Yanren Hou,et al. Numerical analysis for the mixed Navier–Stokes and Darcy Problem with the Beavers–Joseph interface condition , 2015 .
[2] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[3] J. Douglas,et al. PEERS: A new mixed finite element for plane elasticity , 1984 .
[4] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[5] Béatrice Rivière,et al. Time-dependent coupling of Navier–Stokes and Darcy flows , 2013 .
[6] Gabriel N. Gatica,et al. Analysis of an augmented mixed‐primal formulation for the stationary Boussinesq problem , 2016 .
[7] E. Miglio,et al. Mathematical and numerical models for coupling surface and groundwater flows , 2002 .
[8] L. Franca,et al. Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .
[9] Ricardo Oyarzúa,et al. A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem , 2016, Numerische Mathematik.
[10] G. Gatica,et al. A priori and a posteriori error analyses of augmented twofold saddle point formulations for nonlinear elasticity problems , 2013 .
[11] Francisco-Javier Sayas,et al. Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem , 2011, Math. Comput..
[12] Weakly imposed Dirichlet boundary conditions for the Brinkman model of porous media flow , 2009 .
[13] Marco Discacciati,et al. Domain decomposition methods for the coupling of surface and groundwater flows , 2004 .
[14] T. Hughes,et al. Two classes of mixed finite element methods , 1988 .
[15] Cornelius O. Horgan,et al. Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..
[16] Shun Zhang,et al. Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation , 2012, Math. Comput..
[17] Panayot S. Vassilevski,et al. Mixed finite element methods for incompressible flow: Stationary Stokes equations , 2010 .
[18] Gabriel N. Gatica,et al. An Augmented Mixed Finite Element Method for the Navier-Stokes Equations with Variable Viscosity , 2016, SIAM J. Numer. Anal..
[19] Alfio Quarteroni,et al. Numerical analysis of the Navier–Stokes/Darcy coupling , 2010, Numerische Mathematik.
[20] Francisco-Javier Sayas,et al. A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow , 2012 .
[21] Béatrice Rivière,et al. Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow , 2008, J. Num. Math..
[22] W. Wendland,et al. Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems , 1996 .
[23] N. Heuer,et al. On the numerical analysis of nonlinear twofold saddle point problems , 2003 .
[24] Jim Douglas,et al. An absolutely stabilized finite element method for the stokes problem , 1989 .
[25] Ricardo Ruiz-Baier,et al. New fully-mixed finite element methods for the Stokes–Darcy coupling☆ , 2015 .
[26] Gabriel N. Gatica,et al. Augmented Mixed Finite Element Methods for the Stationary Stokes Equations , 2008, SIAM J. Sci. Comput..
[27] R. Codina,et al. Stabilized stress–velocity–pressure finite element formulations of the Navier–Stokes problem for fluids with non-linear viscosity , 2014 .
[28] Jinchao Xu,et al. Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..
[29] Ricardo Oyarzúa,et al. Analysis of an augmented mixed-FEM for the Navier-Stokes problem , 2016, Math. Comput..
[30] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[31] Jason S. Howell,et al. DUAL-MIXED FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS , 2013 .
[32] Sabine Fenstermacher,et al. Numerical Approximation Of Partial Differential Equations , 2016 .
[33] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[34] Shun Zhang,et al. Mixed Finite Element Methods for Incompressible Flow: Stationary Navier-Stokes Equations , 2010, SIAM J. Numer. Anal..
[35] Xiaoming He,et al. Decoupling the Stationary Navier-Stokes-Darcy System with the Beavers-Joseph-Saffman Interface Condition , 2013 .
[36] P. G. Ciarlet,et al. Linear and Nonlinear Functional Analysis with Applications , 2013 .
[37] G. Gatica,et al. Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media , 2014 .
[38] P. H. Chang,et al. Necessary and sufficient conditions for the existence of shock curves of hyperbolic 1‐conservation laws , 1981 .
[39] Salim Meddahi,et al. A Coupled Mixed Finite Element Method for the Interaction Problem between an Electromagnetic Field and an Elastic Body , 2010, SIAM J. Numer. Anal..
[40] Gabriel N. Gatica,et al. A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows , 2011 .
[41] A. Quarteroni,et al. Navier-Stokes/Darcy Coupling: Modeling, Analysis, and Numerical Approximation , 2009 .
[42] G. Gatica. A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .
[43] B. Rivière,et al. On the solution of the coupled Navier–Stokes and Darcy equations , 2009 .
[44] L. D. Marini,et al. MIXED FINITE ELEMENT METHODS WITH CONTINUOUS STRESSES , 1993 .
[45] Jason S. Howell,et al. Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using trace-free velocity gradients , 2009, J. Comput. Appl. Math..
[46] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[47] G. Gatica,et al. A conforming mixed finite-element method for the coupling of fluid flow with porous media flow , 2008 .
[48] VIVETTE GIRAULT,et al. DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..
[49] S. Meddahi,et al. Strong coupling of finite element methods for the Stokes–Darcy problem , 2012, 1203.4717.
[50] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[51] G. Burton. Sobolev Spaces , 2013 .
[52] Salim Meddahi,et al. Analysis of the Coupling of Primal and Dual-Mixed Finite Element Methods for a Two-Dimensional Fluid-Solid Interaction Problem , 2007, SIAM J. Numer. Anal..