A mean plastic strain fatigue–creep life prediction and reliability analysis of AISI H13 based on energy method

[1]  J. Majumdar,et al.  Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel , 2015 .

[2]  Weiwen Peng,et al.  Mean stress effect correction in strain energy-based fatigue life prediction of metals , 2017 .

[3]  Mohd Amri Lajis,et al.  A Review on Recycling Aluminum Chips by Hot Extrusion Process , 2015 .

[4]  Shan-Tung Tu,et al.  Review of creep–fatigue endurance and life prediction of 316 stainless steels , 2015 .

[5]  Xuedong Chen,et al.  Fatigue–creep behavior of 1.25Cr0.5Mo steel at high temperature and its life prediction , 2007 .

[6]  J. Majumdar,et al.  Structure–property correlation in laser surface treated AISI H13 tool steel for improved mechanical properties , 2014 .

[7]  Yao Liu,et al.  Crack growth behavior at thermal fatigue of H13 tool steel processed by laser surface melting , 2015 .

[8]  R. Skelton Deformation, diffusion and ductility during creep – continuous void nucleation and creep-fatigue damage , 2017 .

[9]  Hong-Zhong Huang,et al.  A unified criterion for fatigue–creep life prediction of high temperature components , 2017 .

[10]  Shun-Peng Zhu,et al.  Probabilistic framework for multiaxial LCF assessment under material variability , 2017 .

[11]  Jie Zhou,et al.  The role of creep and fatigue in determining the high-temperature behaviour of AISI H11 tempered steel for aluminium extrusion dies , 2010 .

[12]  Shun-Peng Zhu,et al.  A generalized frequency separation–strain energy damage function model for low cycle fatigue–creep life prediction , 2010 .

[13]  Hong-Zhong Huang,et al.  A Novel Viscosity-Based Model for Low Cycle Fatigue–Creep Life Prediction of High-Temperature Structures , 2012 .

[14]  Yuanxin Luo,et al.  A new energy-based method to evaluate low-cycle fatigue damage of AISI H11 at elevated temperature , 2017 .

[15]  T. Kruml,et al.  Microstructure evolution during cyclic tests on EUROFER 97 at room temperature. TEM observation and modelling , 2012 .

[16]  Zhihui Zhang,et al.  The characteristics of treated zone processed by pulsed Nd-YAG laser surface remelting on hot work steel , 2014 .

[17]  C. Mabru,et al.  Investigation of crack propagation in X38CrMoV5 (AISI H11) tool steel at elevated temperatures , 2010 .

[18]  M. Mathon,et al.  Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5%Cr tempered martensitic steel , 2005 .

[19]  Sung Soo Kim,et al.  Contribution of microstructure and slip system to cyclic softening of 9 wt.%Cr steel , 2012 .

[20]  Yaming Fan,et al.  A generalized hysteresis energy method for fatigue and creep-fatigue life prediction of 316L(N) , 2015 .

[21]  June Wang Low Cycle Fatigue and Cycle Dependent Creep with Continuum Damage Mechanics , 1992 .

[22]  K. Nikbin A unified multiscale ductility exhaustion based approach to predict uniaxial, multiaxial creep rupture and crack growth , 2017 .

[23]  Hong-Zhong Huang,et al.  A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys , 2012 .

[24]  Yannick Desplanques,et al.  Failure mechanisms of H13 die on relation to the forging process – A case study of brass gas valves , 2010 .

[25]  R. A. Shenoi,et al.  A practical randomization approach of deterministic equation to determine probabilistic fatigue and fracture behaviours based on small experimental data sets , 2007 .

[26]  Lorenzo Donati,et al.  The effect of die design on the production and seam weld quality of extruded aluminum profiles , 2005 .

[27]  Maurizio Guida,et al.  A Bayesian analysis of fatigue data , 2010 .

[28]  Distribution type uncertainty due to sparse and imprecise data , 2013 .