Rational Krylov Methods for Nonlinear Eigenvalue Problems

Eigenvalue problems arise in all fields of science and engineering. The mathematical properties and numerical solution methods for standard, linear eigenvalue problems are well understood. However, recent advances in several application areas resulted in a new type of eigenvalue problem, i.e., the nonlinear eigenvalue problem which exhibits nonlinearity in the eigenvalue parameter. The goal of this thesis is to develop new rational Krylov methods for solving both small-scale and large-scale nonlinear eigenvalue problems. Firstly, by using polynomial and rational interpolation of the matrix-valued functions, we obtain methods which are globally convergent inside the region of interest. Secondly, linearization of the corresponding polynomial and rational eigenvalue problems results in linear pencils. Thirdly, the exploitation of the special structure of the linearization pencils and possibly a low rank structure results in efficient and reliable software which is publicly available. We propose the Compact Rational Krylov (CORK) method as a generic class of numerical methods for solving nonlinear eigenvalue problems. CORK is characterized by a uniform and simple representation of structured linearization pencils. The structure of these linearization pencils is fully exploited and the subspace is represented in a compact form. Consequently, we are able to solve problems of high dimension and high degree in an efficient and reliable way. The family of CORK methods has a lot of flexibility for solving the nonlinear eigenvalue problem. We discuss three particular types of CORK methods. The first one is the Newton Rational Krylov method which makes use of dynamic polynomial interpolation. The second one is the Fully Rational Krylov method which uses rational interpolation and has three viable variants: a static, dynamic, and hybrid variant. The third one is the Infinite Arnoldi method which uses an operator setting to solve the nonlinear eigenvalue problem. Finally, the proposed methods are used to solve applications from mechanical engineering, quantum physics, and civil engineering which were not solved earlier with the same efficiency and reliability.

[1]  Wim Michiels,et al.  Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2015, SIAM J. Matrix Anal. Appl..

[2]  Wim Michiels,et al.  Linearization of Lagrange and Hermite interpolating matrix polynomials , 2015 .

[3]  Marc Van Barel,et al.  Designing rational filter functions for solving eigenvalue problems by contour integration , 2015 .

[4]  Wim Michiels,et al.  NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2014, SIAM J. Sci. Comput..

[5]  Wim Michiels,et al.  Determining bound states in a semiconductor device with contacts using a nonlinear eigenvalue solver , 2014 .

[6]  Daniel Kressner,et al.  Memory‐efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis , 2014, Numer. Linear Algebra Appl..

[7]  K. Meerbergen,et al.  Compact rational Krylov methods for solving nonlinear eigenvalue problems , 2014 .

[8]  Wim Michiels,et al.  Fast algorithms for computing the distance to instability of nonlinear eigenvalue problems, with application to time-delay systems , 2014 .

[9]  Wim Michiels,et al.  Computing a Partial Schur Factorization of Nonlinear Eigenvalue Problems Using the Infinite Arnoldi Method , 2014, SIAM J. Matrix Anal. Appl..

[10]  C. Effenberger,et al.  Robust Successive Computation of Eigenpairs for Nonlinear Eigenvalue Problems , 2013, SIAM J. Matrix Anal. Appl..

[11]  S. Güttel Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .

[12]  K. Meerbergen,et al.  A practical rational Krylov algorithm for solving large-scale nonlinear eigenvalue problems , 2013 .

[13]  John P. Boyd,et al.  Finding the Zeros of a Univariate Equation: Proxy Rootfinders, Chebyshev Interpolation, and the Companion Matrix , 2013, SIAM Rev..

[14]  Sven Hammarling,et al.  An algorithm for the complete solution of quadratic eigenvalue problems , 2013, TOMS.

[15]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[16]  Wim Michiels,et al.  A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems , 2012, SIAM J. Sci. Comput..

[17]  Burhan Sadiq,et al.  Barycentric Hermite Interpolation , 2011, SIAM J. Sci. Comput..

[18]  Tetsuya Sakurai,et al.  A projection method for nonlinear eigenvalue problems using contour integrals , 2013, JSIAM Lett..

[19]  Peter Cedric Effenberger Robust Solution Methods for Nonlinear Eigenvalue Problems , 2013 .

[20]  Wim Michiels,et al.  A linear eigenvalue algorithm for the nonlinear eigenvalue problem , 2012, Numerische Mathematik.

[21]  Geert Lombaert,et al.  Model reduction for dynamical systems with quadratic output , 2012 .

[22]  K. Meerbergen,et al.  A rational Krylov method based on Newton and/or Hermite interpolation for the nonlinear eigenvalue problem , 2012 .

[23]  D. Kressner,et al.  Chebyshev interpolation for nonlinear eigenvalue problems , 2012 .

[24]  Zhen Wu,et al.  Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method , 2010, J. Comput. Appl. Math..

[25]  Wolf-Jurgen Beyn,et al.  An integral method for solving nonlinear eigenvalue problems , 2010, 1003.1580.

[26]  Roel Van Beeumen,et al.  Numerical modelling of ancient primary glass furnaces , 2011 .

[27]  Zhaojun Bai,et al.  Solving Rational Eigenvalue Problems via Linearization , 2011, SIAM J. Matrix Anal. Appl..

[28]  Manex Martinez Aguirre Experimental and numerical dynamic analysis of press-formed viscoelastic sandwich structures , 2011 .

[29]  L. Trefethen,et al.  Robust rational interpolation and least-squares , 2011 .

[30]  Volker Mehrmann,et al.  Smith Forms of Palindromic Matrix Polynomials , 2011 .

[31]  Wim Michiels,et al.  A Krylov Method for the Delay Eigenvalue Problem , 2010, SIAM J. Sci. Comput..

[32]  K. Meerbergen,et al.  Model Reduction by Balanced Truncation of Linear Systems with a Quadratic Output , 2010 .

[33]  Martin Gugat Boundary feedback stabilization by time delay for one-dimensional wave equations , 2010, IMA J. Math. Control. Inf..

[34]  Stefan Güttel,et al.  Rational Krylov Methods for Operator Functions , 2010 .

[35]  Z. Bai,et al.  NONLINEAR RAYLEIGH-RITZ ITERATIVE METHOD FOR SOLVING LARGE SCALE NONLINEAR EIGENVALUE PROBLEMS , 2010 .

[36]  Wim Michiels,et al.  An Arnoldi method with structured starting vectors for the delay eigenvalue problem , 2010 .

[37]  Daniel Kressner,et al.  A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.

[38]  Noureddine Atalla,et al.  A New 3D Finite Element for Sandwich Beams With a Viscoelastic Core , 2009 .

[39]  Mattias Schevenels,et al.  EDT: An ElastoDynamics Toolbox for MATLAB , 2008, Comput. Geosci..

[40]  R. Vermiglio,et al.  TRACE-DDE: a Tool for Robust Analysis and Characteristic Equations for Delay Differential Equations , 2009 .

[41]  Hiroto Tadano,et al.  A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..

[42]  Karl Meerbergen,et al.  The Quadratic Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2008, SIAM J. Matrix Anal. Appl..

[43]  P. Lancaster,et al.  Linearization of matrix polynomials expressed in polynomial bases , 2008 .

[44]  L. González-Vega,et al.  Barycentric Hermite Interpolants for Event Location in Initial-Value Problems , 2008 .

[45]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[46]  H. Voss A Jacobi-Davidson method for nonlinear and nonsymmetric eigenproblems , 2007 .

[47]  Mattias Schevenels The impact of uncertain dynamic soil characteristics on the prediction of ground vibrations , 2007 .

[48]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[49]  Adam Guetz,et al.  Advances in Electromagnetic Modelling through High Performance Computing , 2006 .

[50]  Dimitri Breda,et al.  Solution operator approximations for characteristic roots of delay differential equations , 2006 .

[51]  R. Vermiglio,et al.  Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions , 2006 .

[52]  Amirhossein Amiraslani New algorithms for matrices, polynomials and matrix polynomials , 2006 .

[53]  Edward B. Saff,et al.  Potential theoretic tools in polynomial and rational approximation , 2006 .

[54]  Dimitri Breda,et al.  Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations , 2005, SIAM J. Sci. Comput..

[55]  Zhaojun Bai,et al.  SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[56]  Claus Schneider,et al.  Hermite interpolation: The barycentric approach , 1991, Computing.

[57]  Lie-Quan Lee,et al.  Achievements in ISICs/SAPP collaborations for electromagnetic modeling of accelerators , 2005 .

[58]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[59]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[60]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .

[61]  Timo Betcke,et al.  A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..

[62]  E. Antoniou,et al.  A new family of companion forms of polynomial matrices , 2004 .

[63]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[64]  R. M. Corless,et al.  Generalized Companion Matrices in the Lagrange Bases , 2004 .

[65]  Miroslav Fiedler,et al.  A note on companion matrices , 2003 .

[66]  Mohan D. Rao,et al.  Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes , 2003 .

[67]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[68]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[69]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[70]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[71]  Axel Ruhe,et al.  Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..

[72]  Axel Ruhe,et al.  Eigenvalue algorithms with several factorizations -- a unified theory yet? , 1998 .

[73]  K. Meerbergen,et al.  The implicit application of a rational filter in the RKS method , 1997 .

[74]  R. Lehoucq Analysis and implementation of an implicitly restarted Arnoldi iteration , 1996 .

[75]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[76]  Jianhong Wu Theory and Applications of Partial Functional Differential Equations , 1996 .

[77]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..

[78]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[79]  Hajime Igarashi,et al.  A numerical computation of external Q of resonant cavities , 1995 .

[80]  Edward B. Saff,et al.  Erratum: Optimal ray sequences of rational functions connected with the zolotarev problem , 1994 .

[81]  E. B. Saff,et al.  Optimal ray sequences of rational functions connected with the Zolotarev problem , 1994 .

[82]  Soheil Nazarian,et al.  Automated Surface Wave Method: Field Testing , 1993 .

[83]  Soheil Nazarian,et al.  Automated surface wave method: Inversion technique , 1993 .

[84]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[85]  L. Reichel Newton interpolation at Leja points , 1990 .

[86]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .

[87]  I. Gohberg,et al.  General theory of regular matrix polynomials and band Toeplitz operators , 1988 .

[88]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[89]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[90]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[91]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[92]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .

[93]  A. Gončar,et al.  Zolotarev Problems Connected with Rational Functions , 1969 .

[94]  Thomas Bagby On interpolation by rational functions , 1969 .

[95]  Avner Friedman,et al.  Nonlinear eigenvalue problems , 1968 .

[96]  T. Bagby,et al.  The Modulus of a Plane Condenser , 1967 .

[97]  J. L. Walsh,et al.  Hyperbolic capacity and interpolating rational functions II , 1965 .

[98]  V. Kublanovskaya On some algorithms for the solution of the complete eigenvalue problem , 1962 .

[99]  J. G. F. Francis,et al.  The QR Transformation - Part 2 , 1962, Comput. J..

[100]  P. Lancaster A generalised rayleigh quotient iteration for lambda-matrices , 1961 .

[101]  J. G. F. Francis,et al.  The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..

[102]  F. Leja Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme , 1957 .

[103]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[104]  Albert Edrei,et al.  Sur les déterminants récurrents et les singularités d'une fonction donnée par son développement de Taylor , 1939 .

[105]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[106]  J. L. Walsh,et al.  On interpolation and approximation by rational functions with preassigned poles , 1932 .