Rational Krylov Methods for Nonlinear Eigenvalue Problems
暂无分享,去创建一个
[1] Wim Michiels,et al. Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2015, SIAM J. Matrix Anal. Appl..
[2] Wim Michiels,et al. Linearization of Lagrange and Hermite interpolating matrix polynomials , 2015 .
[3] Marc Van Barel,et al. Designing rational filter functions for solving eigenvalue problems by contour integration , 2015 .
[4] Wim Michiels,et al. NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2014, SIAM J. Sci. Comput..
[5] Wim Michiels,et al. Determining bound states in a semiconductor device with contacts using a nonlinear eigenvalue solver , 2014 .
[6] Daniel Kressner,et al. Memory‐efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis , 2014, Numer. Linear Algebra Appl..
[7] K. Meerbergen,et al. Compact rational Krylov methods for solving nonlinear eigenvalue problems , 2014 .
[8] Wim Michiels,et al. Fast algorithms for computing the distance to instability of nonlinear eigenvalue problems, with application to time-delay systems , 2014 .
[9] Wim Michiels,et al. Computing a Partial Schur Factorization of Nonlinear Eigenvalue Problems Using the Infinite Arnoldi Method , 2014, SIAM J. Matrix Anal. Appl..
[10] C. Effenberger,et al. Robust Successive Computation of Eigenpairs for Nonlinear Eigenvalue Problems , 2013, SIAM J. Matrix Anal. Appl..
[11] S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .
[12] K. Meerbergen,et al. A practical rational Krylov algorithm for solving large-scale nonlinear eigenvalue problems , 2013 .
[13] John P. Boyd,et al. Finding the Zeros of a Univariate Equation: Proxy Rootfinders, Chebyshev Interpolation, and the Companion Matrix , 2013, SIAM Rev..
[14] Sven Hammarling,et al. An algorithm for the complete solution of quadratic eigenvalue problems , 2013, TOMS.
[15] Nicholas J. Higham,et al. NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.
[16] Wim Michiels,et al. A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems , 2012, SIAM J. Sci. Comput..
[17] Burhan Sadiq,et al. Barycentric Hermite Interpolation , 2011, SIAM J. Sci. Comput..
[18] Tetsuya Sakurai,et al. A projection method for nonlinear eigenvalue problems using contour integrals , 2013, JSIAM Lett..
[19] Peter Cedric Effenberger. Robust Solution Methods for Nonlinear Eigenvalue Problems , 2013 .
[20] Wim Michiels,et al. A linear eigenvalue algorithm for the nonlinear eigenvalue problem , 2012, Numerische Mathematik.
[21] Geert Lombaert,et al. Model reduction for dynamical systems with quadratic output , 2012 .
[22] K. Meerbergen,et al. A rational Krylov method based on Newton and/or Hermite interpolation for the nonlinear eigenvalue problem , 2012 .
[23] D. Kressner,et al. Chebyshev interpolation for nonlinear eigenvalue problems , 2012 .
[24] Zhen Wu,et al. Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method , 2010, J. Comput. Appl. Math..
[25] Wolf-Jurgen Beyn,et al. An integral method for solving nonlinear eigenvalue problems , 2010, 1003.1580.
[26] Roel Van Beeumen,et al. Numerical modelling of ancient primary glass furnaces , 2011 .
[27] Zhaojun Bai,et al. Solving Rational Eigenvalue Problems via Linearization , 2011, SIAM J. Matrix Anal. Appl..
[28] Manex Martinez Aguirre. Experimental and numerical dynamic analysis of press-formed viscoelastic sandwich structures , 2011 .
[29] L. Trefethen,et al. Robust rational interpolation and least-squares , 2011 .
[30] Volker Mehrmann,et al. Smith Forms of Palindromic Matrix Polynomials , 2011 .
[31] Wim Michiels,et al. A Krylov Method for the Delay Eigenvalue Problem , 2010, SIAM J. Sci. Comput..
[32] K. Meerbergen,et al. Model Reduction by Balanced Truncation of Linear Systems with a Quadratic Output , 2010 .
[33] Martin Gugat. Boundary feedback stabilization by time delay for one-dimensional wave equations , 2010, IMA J. Math. Control. Inf..
[34] Stefan Güttel,et al. Rational Krylov Methods for Operator Functions , 2010 .
[35] Z. Bai,et al. NONLINEAR RAYLEIGH-RITZ ITERATIVE METHOD FOR SOLVING LARGE SCALE NONLINEAR EIGENVALUE PROBLEMS , 2010 .
[36] Wim Michiels,et al. An Arnoldi method with structured starting vectors for the delay eigenvalue problem , 2010 .
[37] Daniel Kressner,et al. A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.
[38] Noureddine Atalla,et al. A New 3D Finite Element for Sandwich Beams With a Viscoelastic Core , 2009 .
[39] Mattias Schevenels,et al. EDT: An ElastoDynamics Toolbox for MATLAB , 2008, Comput. Geosci..
[40] R. Vermiglio,et al. TRACE-DDE: a Tool for Robust Analysis and Characteristic Equations for Delay Differential Equations , 2009 .
[41] Hiroto Tadano,et al. A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..
[42] Karl Meerbergen,et al. The Quadratic Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2008, SIAM J. Matrix Anal. Appl..
[43] P. Lancaster,et al. Linearization of matrix polynomials expressed in polynomial bases , 2008 .
[44] L. González-Vega,et al. Barycentric Hermite Interpolants for Event Location in Initial-Value Problems , 2008 .
[45] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[46] H. Voss. A Jacobi-Davidson method for nonlinear and nonsymmetric eigenproblems , 2007 .
[47] Mattias Schevenels. The impact of uncertain dynamic soil characteristics on the prediction of ground vibrations , 2007 .
[48] Volker Mehrmann,et al. Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[49] Adam Guetz,et al. Advances in Electromagnetic Modelling through High Performance Computing , 2006 .
[50] Dimitri Breda,et al. Solution operator approximations for characteristic roots of delay differential equations , 2006 .
[51] R. Vermiglio,et al. Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions , 2006 .
[52] Amirhossein Amiraslani. New algorithms for matrices, polynomials and matrix polynomials , 2006 .
[53] Edward B. Saff,et al. Potential theoretic tools in polynomial and rational approximation , 2006 .
[54] Dimitri Breda,et al. Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations , 2005, SIAM J. Sci. Comput..
[55] Zhaojun Bai,et al. SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..
[56] Claus Schneider,et al. Hermite interpolation: The barycentric approach , 1991, Computing.
[57] Lie-Quan Lee,et al. Achievements in ISICs/SAPP collaborations for electromagnetic modeling of accelerators , 2005 .
[58] V. Mehrmann,et al. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .
[59] N. Higham. The numerical stability of barycentric Lagrange interpolation , 2004 .
[60] H. Voss. An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .
[61] Timo Betcke,et al. A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..
[62] E. Antoniou,et al. A new family of companion forms of polynomial matrices , 2004 .
[63] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[64] R. M. Corless,et al. Generalized Companion Matrices in the Lagrange Bases , 2004 .
[65] Miroslav Fiedler,et al. A note on companion matrices , 2003 .
[66] Mohan D. Rao,et al. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes , 2003 .
[67] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[68] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[69] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[70] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[71] Axel Ruhe,et al. Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..
[72] Axel Ruhe,et al. Eigenvalue algorithms with several factorizations -- a unified theory yet? , 1998 .
[73] K. Meerbergen,et al. The implicit application of a rational filter in the RKS method , 1997 .
[74] R. Lehoucq. Analysis and implementation of an implicitly restarted Arnoldi iteration , 1996 .
[75] Danny C. Sorensen,et al. Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..
[76] Jianhong Wu. Theory and Applications of Partial Functional Differential Equations , 1996 .
[77] Ronald B. Morgan,et al. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..
[78] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..
[79] Hajime Igarashi,et al. A numerical computation of external Q of resonant cavities , 1995 .
[80] Edward B. Saff,et al. Erratum: Optimal ray sequences of rational functions connected with the zolotarev problem , 1994 .
[81] E. B. Saff,et al. Optimal ray sequences of rational functions connected with the Zolotarev problem , 1994 .
[82] Soheil Nazarian,et al. Automated Surface Wave Method: Field Testing , 1993 .
[83] Soheil Nazarian,et al. Automated surface wave method: Inversion technique , 1993 .
[84] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[85] L. Reichel. Newton interpolation at Leja points , 1990 .
[86] Craig S. Lent,et al. The quantum transmitting boundary method , 1990 .
[87] I. Gohberg,et al. General theory of regular matrix polynomials and band Toeplitz operators , 1988 .
[88] A. Neumaier. RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .
[89] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .
[90] Y. Saad. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .
[91] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[92] Axel Ruhe. ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .
[93] A. Gončar,et al. Zolotarev Problems Connected with Rational Functions , 1969 .
[94] Thomas Bagby. On interpolation by rational functions , 1969 .
[95] Avner Friedman,et al. Nonlinear eigenvalue problems , 1968 .
[96] T. Bagby,et al. The Modulus of a Plane Condenser , 1967 .
[97] J. L. Walsh,et al. Hyperbolic capacity and interpolating rational functions II , 1965 .
[98] V. Kublanovskaya. On some algorithms for the solution of the complete eigenvalue problem , 1962 .
[99] J. G. F. Francis,et al. The QR Transformation - Part 2 , 1962, Comput. J..
[100] P. Lancaster. A generalised rayleigh quotient iteration for lambda-matrices , 1961 .
[101] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..
[102] F. Leja. Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme , 1957 .
[103] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[104] Albert Edrei,et al. Sur les déterminants récurrents et les singularités d'une fonction donnée par son développement de Taylor , 1939 .
[105] J. Walsh. Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .
[106] J. L. Walsh,et al. On interpolation and approximation by rational functions with preassigned poles , 1932 .