Exploiting capacitance in high-performance computer systems

Aggressive scaling of transistor feature sizes has enabled unprecedented levels of integration and corresponding performance improvements in VLSI systems. However, fabrication costs present barriers to continued growth in transistor density. Proximity Communication breaks these barriers by providing high-density, high-bandwidth, low-power, and scalable off-chip I/O, allowing designers to partition their designs into separate chips with significantly reduced performance penalties. This partitioning greatly improves chip and package yield, and enables modular assemblies of heterogeneous systems with customizable mixes of functional units tailored for specific end-user applications.

[1]  K. Bernstein,et al.  Scaling, power, and the future of CMOS , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[2]  R. Ho,et al.  Proximity communication , 2004, IEEE Journal of Solid-State Circuits.

[3]  M. K. Gowan,et al.  A 65nm 2-Billion-Transistor Quad-Core Itanium® Processor , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[4]  Jiun-In Guo,et al.  A 7mW-to-183mW Dynamic Quality-Scalable H.264 Video Encoder Chip , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[5]  Hannu Tenhunen,et al.  System-on-chip or system-on-package: can we make an accurate decision on system implementation in an early design phase? , 2003, Southwest Symposium on Mixed-Signal Design, 2003..

[6]  C. H. Stapper,et al.  On Murphy's yield integral (IC manufacture) , 1991 .

[7]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[8]  Gordon E. Moore Lithography and the future of Moore's law , 1995, Advanced Lithography.

[9]  Jiun-In Guo,et al.  A 252kgate/71mW Multi-Standard Multi-Channel Video Decoder for High Definition Video Applications , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[10]  Fabrizio Lombardi,et al.  Yield analysis of fault-tolerant multichip module systems for massively parallel computing , 1995, Proceedings IEEE International Conference on Wafer Scale Integration (ICWSI).

[11]  Bernd Meister,et al.  On Murphy's Yield Formula , 1983, IBM J. Res. Dev..

[12]  Hoi-Jun Yoo,et al.  A 52.4mW 3D Graphics Processor with 141Mvertices/s Vertex Shader and 3 Power Domains of Dynamic Voltage and Frequency Scaling , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[13]  Kenji Hirose,et al.  A 390MHz Single-Chip Application and Dual-Mode Baseband Processor in 90nm Triple-Vt CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[14]  Gaurav Mittal,et al.  Design of the Power6 Microprocessor , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[15]  R. Ho,et al.  Electronic alignment for proximity communication , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[16]  Patrick Groeneveld Physical design challenges for billion transistor chips , 2002, Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[17]  R.P. Kleihorst,et al.  Xetal-II: A 107 GOPS, 600 mW Massively Parallel Processor for Video Scene Analysis , 2008, IEEE Journal of Solid-State Circuits.

[18]  Gordon E. Moore,et al.  Progress in digital integrated electronics , 1975 .

[19]  S. Tam,et al.  A Dual-Core Multi-Threaded Xeon Processor with 16MB L3 Cache , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[20]  Evan E. Davidson Large chip vs. MCM for a high-performance system , 1998, IEEE Micro.

[21]  B. T. Murphy,et al.  Cost-size optima of monolithic integrated circuits , 1964 .

[22]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[23]  Ashok Kumar,et al.  An 8-Core 64-Thread 64b Power-Efficient SPARC SoC , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[24]  Justin Schauer,et al.  High Speed and Low Energy Capacitively Driven On-Chip Wires , 2008, IEEE Journal of Solid-State Circuits.

[25]  Paul Wielage,et al.  XETAL-II: A 107 GOPS, 600mW Massively-Parallel Processor for Video Scene Analysis , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[26]  Ron Ho,et al.  Measuring 6D Chip Alignment in Multi-Chip Packages , 2007, 2007 IEEE Sensors.

[27]  Gary J. Sullivan,et al.  Rate-constrained coder control and comparison of video coding standards , 2003, IEEE Trans. Circuits Syst. Video Technol..

[28]  Marc Tremblay,et al.  A Third-Generation 65nm 16-Core 32-Thread Plus 32-Scout-Thread CMT SPARC® Processor , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[29]  R. J. Wagner,et al.  High-yield assembly of multichip modules through known-good IC's and effective test strategies , 1992, Proc. IEEE.

[30]  Justin Schauer,et al.  Circuit Techniques to Enable 430Gb/s/mm2 Proximity Communication , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.