Connectivity and dynamics of neural information processing

In this article, we systematically review the current literature on neural connectivity and dynamics, or equivalently, structure and function. In particular, we discuss how changes in the connectivity of a neural network affect the spatiotemporal network dynamics qualitatively. The three major criteria of comparison are, first, the local dynamics at the network nodes which includes fixed point dynamics, oscillatory and chaotic dynamics; second, the presence of time delays via propagation along connecting pathways; and third, the properties of the connectivity matrix such as its statistics, symmetry, and translational invariance. Since the connection topology changes when anatomical scales are traversed, so will the corresponding network dynamics change. As a consequence different types of networks are encountered on different levels of neural organization.

[1]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[2]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[3]  P. Nunez The brain wave equation: a model for the EEG , 1974 .

[4]  H. Haken Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems , 1975 .

[5]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[6]  Stephen Grossberg,et al.  Absolute stability of global pattern formation and parallel memory storage by competitive neural networks , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  F. Brauer Absolute stability in delay equations , 1987 .

[10]  Stephen Grossberg,et al.  Nonlinear neural networks: Principles, mechanisms, and architectures , 1988, Neural Networks.

[11]  Marcel Abendroth,et al.  Biological delay systems: Linear stability theory , 1990 .

[12]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[13]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[14]  T. M. Mayhew,et al.  Anatomy of the Cortex: Statistics and Geometry. , 1991 .

[15]  Walter J. Freeman,et al.  TUTORIAL ON NEUROBIOLOGY: FROM SINGLE NEURONS TO BRAIN CHAOS , 1992 .

[16]  H. Haken,et al.  PHASE TRANSITIONS IN THE HUMAN BRAIN: SPATIAL MODE DYNAMICS , 1992 .

[17]  A. Fuchs,et al.  A phase transition in human brain and behavior , 1992 .

[18]  J. Bélair Stability in a model of a delayed neural network , 1993 .

[19]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[20]  H. Haken,et al.  Reconstruction of the spatio-temporal dynamics of a human magnetoencephalogram , 1995 .

[21]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[22]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[23]  Hanspeter A. Mallot,et al.  Population networks: a large-scale framework for modelling cortical neural networks , 1996, Biological Cybernetics.

[24]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[25]  Bressloff New mechanism for neural pattern formation. , 1996, Physical review letters.

[26]  James J. Wright,et al.  Dynamics of the brain at global and microscopic scales: Neural networks and the EEG , 1996, Behavioral and Brain Sciences.

[27]  K. Kaneko Dominance of Milnor Attractors and Noise-Induced Selection in a Multiattractor System , 1997 .

[28]  James J. Wright,et al.  Propagation and stability of waves of electrical activity in the cerebral cortex , 1997 .

[29]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[30]  H. Haken,et al.  A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics , 1997 .

[31]  Pauline van den Driessche,et al.  Global Attractivity in Delayed Hopfield Neural Network Models , 1998, SIAM J. Appl. Math..

[32]  Deliang Wang,et al.  Relaxation oscillators with time delay coupling , 1998 .

[33]  B. Horwitz,et al.  Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. , 1998, Cerebral cortex.

[34]  Huberman,et al.  Strong regularities in world wide web surfing , 1998, Science.

[35]  D. V. Reddy,et al.  Time delay effects on coupled limit cycle oscillators at Hopf bifurcation , 1998, chao-dyn/9810023.

[36]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[37]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[38]  Viktor K. Jirsa,et al.  Connecting Cortical and Behavioral Dynamics: Bimanual Coordination , 1998, Neural Computation.

[39]  E. Ott,et al.  EFFECT OF INHOMOGENEITY ON SPIRAL WAVE DYNAMICS , 1999 .

[40]  D. Liley,et al.  Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  H. Haken,et al.  Impacts of noise on a field theoretical model of the human brain , 1999 .

[42]  Lada A. Adamic,et al.  Internet: Growth dynamics of the World-Wide Web , 1999, Nature.

[43]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[44]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[45]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[46]  Karl J. Friston,et al.  Neural modeling and functional brain imaging: an overview , 2000, Neural Networks.

[47]  J A Kelso,et al.  Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  L F Lago-Fernández,et al.  Fast response and temporal coherent oscillations in small-world networks. , 1999, Physical review letters.

[49]  Wulfram Gerstner,et al.  Population Dynamics of Spiking Neurons: Fast Transients, Asynchronous States, and Locking , 2000, Neural Computation.

[50]  M. Arbib,et al.  Précis of Neural organization: Structure, function, and dynamics , 2000, Behavioral and Brain Sciences.

[51]  G Tononi,et al.  Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. , 2000, Cerebral cortex.

[52]  Sue Ann Campbell,et al.  Stability, Bifurcation, and Multistability in a System of Two Coupled Neurons with Multiple Time Delays , 2000, SIAM J. Appl. Math..

[53]  F. Sommer,et al.  Global Relationship between Anatomical Connectivity and Activity Propagation in the Cerebral Cortex , 2022 .

[54]  H. Haken,et al.  Towards a comprehensive theory of brain activity: coupled oscillator systems under external forces , 2000 .

[55]  A. Fuchs,et al.  Issues in the Coordination of Human Brain Activity and Motor Behavior , 2000, NeuroImage.

[56]  J. Kelso,et al.  Cortical coordination dynamics and cognition , 2001, Trends in Cognitive Sciences.

[57]  Edward W. Large,et al.  Periodicity, Pattern Formation, and Metric Structure , 2001 .

[58]  P. Robinson,et al.  Prediction of electroencephalographic spectra from neurophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Olaf Sporns,et al.  Classes of network connectivity and dynamics , 2001, Complex..

[60]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[61]  G. Calvert Crossmodal processing in the human brain: insights from functional neuroimaging studies. , 2001, Cerebral cortex.

[62]  Julian Eggert,et al.  Modeling Neuronal Assemblies: Theory and Implementation , 2001, Neural Computation.

[63]  S. Bressler Understanding Cognition Through Large-Scale Cortical Networks , 2002 .

[64]  Yuming Chen,et al.  Global stability of neural networks with distributed delays , 2002, Neural Networks.

[65]  G. Schöner,et al.  Dynamic Field Theory of Movement Preparation , 2022 .

[66]  Viktor K. Jirsa,et al.  Heterogeneous Connectivity Patterns Alter the Timing Variability in Spatially Distributed Dynamic Systems , 2002 .

[67]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[68]  K. Aihara,et al.  Stability of genetic regulatory networks with time delay , 2002 .

[69]  E. Ott,et al.  The onset of synchronization in systems of globally coupled chaotic and periodic oscillators , 2002, nlin/0205018.

[70]  Viktor K. Jirsa,et al.  Spatiotemporal forward solution of the EEG and MEG using network modeling , 2002, IEEE Transactions on Medical Imaging.

[71]  P. Érdi,et al.  Mesoscopic neurodynamics. , 2002, Bio Systems.

[72]  S. De Monte,et al.  Coherent regimes of globally coupled dynamical systems. , 2002, Physical review letters.

[73]  F. Atay Distributed delays facilitate amplitude death of coupled oscillators. , 2003, Physical review letters.

[74]  G. Rangarajan,et al.  General stability analysis of synchronized dynamics in coupled systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  G. Lord,et al.  Waves and bumps in neuronal networks with axo-dendritic synaptic interactions , 2003 .

[76]  M. G. Earl,et al.  Synchronization in oscillator networks with delayed coupling: a stability criterion. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  S. Bressler Cortical Coordination Dynamics and the Disorganization Syndrome in Schizophrenia , 2003, Neuropsychopharmacology.

[78]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[79]  Olaf Sporns,et al.  Complex Neural Dynamics , 2004 .

[80]  Mingzhou Ding,et al.  Will a large complex system with time delays be stable? , 2004, Physical review letters.

[81]  Viktor K. Jirsa,et al.  Information Processing in Brain and Behavior Displayed in Large-Scale Scalp Topographies such as EEG and MEG , 2004, Int. J. Bifurc. Chaos.

[82]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[83]  Viktor K. Jirsa,et al.  A theoretical model of phase transitions in the human brain , 1994, Biological Cybernetics.

[84]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .