Numerical simulation of BSDEs using empirical regression methods: theory and practice

This article deals with the numerical resolution of backward stochastic differential equations. Firstly, we consider a rather general case where the filtration is generated by a Brownian motion and a Poisson random measure. We provide a simulation algorithm based on iterative regressions on function bases, which coefficients are evaluated using Monte Carlo simulations. We state fully explicit error bounds. Secondly, restricting to the case of a Brownian filtration, we consider reflected BSDEs and adapt the previous algorithm to that situation. The complexity of the algorithm is very competitive and allows us to treat numerical results in dimension 10.

[1]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[2]  Jianfeng Zhang A numerical scheme for BSDEs , 2004 .

[3]  G. Barles,et al.  Backward stochastic differential equations and integral-partial differential equations , 1997 .

[4]  J. Doob Stochastic processes , 1953 .

[5]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[6]  E. Gobet,et al.  A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.

[7]  B. Fernández,et al.  Reflected BSDE's , PDE's and Variational Inequalities , 1999 .

[8]  Jin Ma,et al.  Representations and regularities for solutions to BSDEs with reflections , 2005 .

[9]  G. Pagès,et al.  Error analysis of the optimal quantization algorithm for obstacle problems , 2003 .

[10]  E. Gobet,et al.  Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations , 2006 .

[11]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[12]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[13]  G. Pagès,et al.  A QUANTIZATION TREE METHOD FOR PRICING AND HEDGING MULTIDIMENSIONAL AMERICAN OPTIONS , 2005 .

[14]  S. Peng,et al.  Reflected solutions of backward SDE's, and related obstacle problems for PDE's , 1997 .

[15]  Antonino Zanette,et al.  Parabolic ADI Methods for Pricing America Options on Two Stocks , 2002, Math. Oper. Res..

[16]  Philip Protter,et al.  The Euler scheme for Lévy driven stochastic differential equations , 1997 .

[17]  Approximation par projections et simulations de Monte-Carlo des équations différentielles stochastiques rétrogrades. , 2005 .

[18]  The Euler Scheme for L?evy Driven Stochastic Difierential Equations: Limit Theorems , 2004, math/0410118.

[19]  Monique Jeanblanc,et al.  On the Starting and Stopping Problem: Application in Reversible Investments , 2007, Math. Oper. Res..

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .