Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Improved consensus network techniques for genome-scale phylogeny.

Although recent studies indicate that estimating phylogenies from alignments of concatenated genes greatly reduces the stochastic error, the potential for systematic error still remains, heightening the need for reliable methods to analyze multigene data sets. Consensus methods provide an alternative, more inclusive, approach for analyzing collections of trees arising from multiple genes. We extend a previously described consensus network method for genome-scale phylogeny (Holland, B. R., K. T. Huber, V. Moulton, and P. J. Lockhart. 2004. Using consensus networks to visualize contradictory evidence for species phylogeny. Mol. Biol. Evol. 21:1459-1461) to incorporate additional information. This additional information could come from bootstrap analysis, Bayesian analysis, or various methods to find confidence sets of trees. The new methods can be extended to include edge weights representing genetic distance. We use three data sets to illustrate the approach: 61 genes from 14 angiosperm taxa and one gymnosperm, 106 genes from eight yeast taxa, and 46 members of a gene family from 15 vertebrate taxa.

[1]  B. Holland,et al.  Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. , 2005, Molecular biology and evolution.

[2]  Vincent Moulton,et al.  Consensus Networks: A Method for Visualising Incompatibilities in Collections of Trees , 2003, WABI.

[3]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[4]  L. Jermiin,et al.  Characterization of the type I interferon locus and identification of novel genes. , 2004, Genomics.

[5]  S. Ho,et al.  Tracing the decay of the historical signal in biological sequence data. , 2004, Systematic biology.

[6]  T. Buckley,et al.  Model misspecification and probabilistic tests of topology: evidence from empirical data sets. , 2002, Systematic biology.

[7]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[8]  K. Strimmer,et al.  Inferring confidence sets of possibly misspecified gene trees , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  J. Huelsenbeck,et al.  Potential applications and pitfalls of Bayesian inference of phylogeny. , 2002, Systematic biology.

[10]  G. Olsen,et al.  Majority-Rule Consensus of Phylogenetic Trees Obtained by Maximum-Likelihood Analysis , 1997 .

[11]  Leon Poladian,et al.  Multi-objective evolutionary algorithms and phylogenetic inference with multiple data sets , 2006, Soft Comput..

[12]  J. Palmer,et al.  Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? , 2004, BMC Evolutionary Biology.

[13]  S. Wölfl,et al.  The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. , 2004, Molecular biology and evolution.

[14]  Charles Semple,et al.  A Framework for Representing Reticulate Evolution , 2005 .

[15]  Hans-Jürgen Bandelt,et al.  Combination of data in phylogenetic analysis , 1995 .

[16]  Vincent Moulton,et al.  Using consensus networks to visualize contradictory evidence for species phylogeny. , 2004, Molecular biology and evolution.

[17]  D. Morrison,et al.  Networks in phylogenetic analysis: new tools for population biology. , 2005, International journal for parasitology.

[18]  Vincent Moulton,et al.  Spectronet: a package for computing spectra and median networks. , 2002, Applied bioinformatics.

[19]  S. Carroll,et al.  Genome-scale approaches to resolving incongruence in molecular phylogenies , 2003, Nature.

[20]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[21]  M. Pagel,et al.  A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. , 2004, Systematic biology.

[22]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[23]  Daniel H. Huson,et al.  Phylogenetic super-networks from partial trees , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[24]  V. Goremykin,et al.  Analysis of the Amborella trichopoda chloroplast genome sequence suggests that amborella is not a basal angiosperm. , 2003, Molecular biology and evolution.

[25]  Faisal Ababneh,et al.  The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. , 2004, Systematic biology.

[26]  H. Kishino,et al.  Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea , 1989, Journal of Molecular Evolution.

[27]  J. Huelsenbeck,et al.  Hobgoblin of phylogenetics? , 1994, Nature.

[28]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[29]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[30]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[31]  Frédéric Delsuc,et al.  Visualizing conflicting evolutionary hypotheses in large collections of trees: using consensus networks to study the origins of placentals and hexapods. , 2005, Systematic biology.

[32]  Rita Casadio,et al.  Algorithms in Bioinformatics, 5th International Workshop, WABI 2005, Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, WABI.

[33]  H. Kishino,et al.  Maximum likelihood inference of protein phylogeny and the origin of chloroplasts , 1990, Journal of Molecular Evolution.

[34]  D. Penny,et al.  Genome-scale phylogeny and the detection of systematic biases. , 2004, Molecular biology and evolution.

[35]  Daniel H. Huson,et al.  Estimating phylogenetic trees and networks using SplitsTree 4 , 2004 .

[36]  Hirohisa Kishino,et al.  Incorporating gene-specific variation when inferring and evaluating optimal evolutionary tree topologies from multilocus sequence data. , 2005, Proceedings of the National Academy of Sciences of the United States of America.