Valuated Matroid Intersection II: Algorithms

Based on the optimality criteria established in part I [{\em SIAM J. Discrete Math.}, 9 (1996), pp. 545--561] we show a primal-type cycle-canceling algorithm and a primal--dual-type augmenting algorithm for the valuated independent assignment problem: given a bipartite graph $G=(V\sp{+}, V\sp{-}; A)$ with arc weight $w: A \to \hbox{{\RR}}$ and matroid valuations $\omega\sp{+}$ and $\omega\sp{-}$ on $V\sp{+}$ and $V\sp{-}$, respectively, find a matching $M (\subseteq A)$ that maximizes $\sum \{w(a) \mid a \in M \} + \omega\sp{+}(\partial\sp{+} M) + \omega\sp{-}(\partial\sp{-} M)$, where $\partial\sp{+} M$ and $\partial\sp{-} M$ denote the sets of vertices in $V\sp{+}$ and $V\sp{-}$ incident to $M$. The proposed algorithms generalize the previous algorithms for the independent assignment problem as well as for the weighted matroid intersection problem, including those due to Lawler [{\em Math. Prog.}, 9 (1975), pp. 31--56], Iri and Tomizawa [{\em J. Oper. Res. Soc. Japan}, 19 (1976), pp. 32--57], Fujishige [{\em J. Oper. Res. Soc. Japan}, 20 (1977), pp. 1--15], Frank [{\em J. Algorithms}, 2 (1981), pp. 328--336], and Zimmermann [{\em Discrete Appl. Math.}, 36 (1992), pp. 179--189].

[1]  Satoru Fujishige,et al.  A PRIMAL APPROACH TO THE INDEPENDENT ASSIGNMENT PROBLEM , 1977 .

[2]  Walter Wenzel,et al.  Valuated matroids: a new look at the greedy algorithm , 1989 .

[3]  A. Frank An Algorithm for Submodular Functions on Graphs , 1982 .

[4]  Kazuo Murota,et al.  Valuated Matroid Intersection I: Optimality Criteria , 1996, SIAM J. Discret. Math..

[5]  S. Thomas McCormick,et al.  Approximate binary search algorithms for mean cuts and cycles , 1993, Oper. Res. Lett..

[6]  András Frank,et al.  A Weighted Matroid Intersection Algorithm , 1981, J. Algorithms.

[7]  Nimrod Megiddo,et al.  Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..

[8]  Uwe T. Zimmermann Negative circuits for flows and submodular flows , 1992, Discret. Appl. Math..

[9]  U. ZIMMERMANN,et al.  Minimization on submodular flows , 1982, Discret. Appl. Math..

[10]  S. Fujishige ALGORITHMS FOR SOLVING THE INDEPENDENT-FLOW PROBLEMS , 1978 .

[11]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[12]  藤重 悟 Submodular functions and optimization , 1991 .

[13]  S. Fujishige,et al.  A PRIMAL ALGORITHM FOR THE SUBMODULAR FLOW PROBLEM WITH MINIMUM-MEAN CYCLE SELECTION , 1988 .

[14]  M. Iri,et al.  AN ALGORITHM FOR FINDING AN OPTIMAL "INDEPENDENT ASSIGNMENT" , 1976 .

[15]  N. Tomizawa,et al.  On some techniques useful for solution of transportation network problems , 1971, Networks.

[16]  András Frank,et al.  A Primal-Dual Algorithm for Submodular Flows , 1985, Math. Oper. Res..

[17]  Eugene L. Lawler,et al.  Matroid intersection algorithms , 1975, Math. Program..

[18]  Kazuo Murota,et al.  Computing the Degree of Determinants Via Combinatorial Relaxation , 1995, SIAM J. Comput..

[19]  M. Klein A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems , 1966 .

[20]  Andrew V. Goldberg,et al.  Finding minimum-cost circulations by canceling negative cycles , 1989, JACM.

[21]  Masao Iri,et al.  A practical algorithm for the Menger-type generalization of the independent assignment problem , 1978 .

[22]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[23]  Satoru Fujishige,et al.  AN ALGORITHM FOR FINDING AN OPTIMAL INDEPENDENT LINKAGE , 1977 .

[24]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum cycle mean problems , 1988 .