Different roles of lateral anterior temporal lobe and inferior parietal lobule in coding function and manipulation tool knowledge: Evidence from an rTMS study

[1]  M Poncet,et al.  The role of sensorimotor experience in object recognition. A case of multimodal agnosia. , 1991, Brain : a journal of neurology.

[2]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[3]  M. Masson,et al.  Using confidence intervals in within-subject designs , 1994, Psychonomic bulletin & review.

[4]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[5]  C. Pierrot-Deseilligny,et al.  Cortical control of saccades in man. , 1991, Acta neurologica Belgica.

[6]  Leslie G. Ungerleider,et al.  Object and spatial visual working memory activate separate neural systems in human cortex. , 1996, Cerebral cortex.

[7]  Bernard Giusiano,et al.  Category specificity in object agnosia: preservation of sensorimotor experiences related to objects , 1998, Neuropsychologia.

[8]  Paul D. MacLean,et al.  The Temporal Lobe and Limbic System. , 1998 .

[9]  S. Kosslyn,et al.  The role of area 17 in visual imagery: convergent evidence from PET and rTMS. , 1999, Science.

[10]  M. L. Lambon Ralph,et al.  The role of conceptual knowledge in object use evidence from semantic dementia. , 2000, Brain : a journal of neurology.

[11]  Myrna F. Schwartz,et al.  Function and manipulation tool knowledge in apraxia: Knowing ‘what for’ but not ‘how’ , 2000 .

[12]  J. Hodges,et al.  Non-verbal semantic impairment in semantic dementia , 2000, Neuropsychologia.

[13]  Richard S. J. Frackowiak,et al.  A voxel‐based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory , 2000, Annals of neurology.

[14]  M. Hallett,et al.  Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior , 2000, Clinical Neurophysiology.

[15]  Á. Pascual-Leone,et al.  Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex , 2001, Nature Neuroscience.

[16]  L. Buxbaum,et al.  Knowledge of object manipulation and object function: dissociations in apraxic and nonapraxic subjects , 2002, Brain and Language.

[17]  J. Hodges,et al.  When objects lose their meaning: What happens to their use? , 2002, Cognitive, affective & behavioral neuroscience.

[18]  Karl J. Friston,et al.  Degeneracy and cognitive anatomy , 2002, Trends in Cognitive Sciences.

[19]  Á. Pascual-Leone,et al.  Degree of language lateralization determines susceptibility to unilateral brain lesions , 2002, Nature Neuroscience.

[20]  James L. McClelland,et al.  The parallel distributed processing approach to semantic cognition , 2003, Nature Reviews Neuroscience.

[21]  A. Pascual-Leone,et al.  Studies in Cognition: The Problems Solved and Created by Transcranial Magnetic Stimulation , 2003, Journal of Cognitive Neuroscience.

[22]  M. Brett,et al.  Actions Speak Louder Than Functions: The Importance of Manipulability and Action in Tool Representation , 2003, Journal of Cognitive Neuroscience.

[23]  R. Klatzky,et al.  Cognitive representations of hand posture in ideomotor apraxia , 2003, Neuropsychologia.

[24]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[25]  Erminio Capitani,et al.  Apraxia is not associated to a disproportionate naming impairment for manipulable objects , 2003, Brain and Cognition.

[26]  Simona Luzzi,et al.  Semantic memory is an amodal, dynamic system: Evidence from the interaction of naming and object use in semantic dementia , 2004, Cognitive neuropsychology.

[27]  James L. McClelland,et al.  Semantic Cognition: A Parallel Distributed Processing Approach , 2004 .

[28]  G. Rizzolatti,et al.  Neural Circuits Underlying Imitation Learning of Hand Actions An Event-Related fMRI Study , 2004, Neuron.

[29]  C. Koch,et al.  Continuous flash suppression reduces negative afterimages , 2005, Nature Neuroscience.

[30]  F. Fang,et al.  Cortical responses to invisible objects in the human dorsal and ventral pathways , 2005, Nature Neuroscience.

[31]  L. Buxbaum,et al.  Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging. , 2005, Brain research. Cognitive brain research.

[32]  N. Ward Neural plasticity and recovery of function. , 2005, Progress in brain research.

[33]  Mark Mühlau,et al.  Left inferior parietal dominance in gesture imitation: an fMRI study , 2005, Neuropsychologia.

[34]  Thomas J. Ross,et al.  Neuroanatomical dissociation between bottom–up and top–down processes of visuospatial selective attention , 2006, NeuroImage.

[35]  L. Buxbaum,et al.  Neural substrates of knowledge of hand postures for object grasping and functional object use: Evidence from fMRI , 2006, Brain Research.

[36]  Tim D. Fryer,et al.  Declarative memory impairments in Alzheimer's disease and semantic dementia , 2006, NeuroImage.

[37]  Chris Rorden,et al.  Pantomime of tool use depends on integrity of left inferior frontal cortex. , 2007, Cerebral cortex.

[38]  G. Gigli,et al.  Degraded Semantic Knowledge And Accurate Object Use , 2007, Cortex.

[39]  T. Rogers,et al.  Neural basis of category-specific semantic deficits for living things: evidence from semantic dementia, HSVE and a neural network model. , 2006, Brain : a journal of neurology.

[40]  E. Jefferies,et al.  Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants , 2007, Proceedings of the National Academy of Sciences.

[41]  Adrienne D. Moll,et al.  Abnormal reliance on object structure in apraxics' learning of novel object-related actions , 2007, Journal of the International Neuropsychological Society.

[42]  T. Rogers,et al.  Where do you know what you know? The representation of semantic knowledge in the human brain , 2007, Nature Reviews Neuroscience.

[43]  Vincent Walsh,et al.  Functional Representation of Living and Nonliving Domains across the Cerebral Hemispheres: A Combined Event-related Potential/Transcranial Magnetic Stimulation Study , 2009, Journal of Cognitive Neuroscience.

[44]  Alfonso Caramazza,et al.  Unconscious processing dissociates along categorical lines , 2008, Proceedings of the National Academy of Sciences.

[45]  Tim Shallice,et al.  The different neural correlates of action and functional knowledge in semantic memory: an FMRI study. , 2008, Cerebral cortex.

[46]  Valerie Treyer,et al.  Time-course of “off-line” prefrontal rTMS effects — a PET study , 2008, NeuroImage.

[47]  Guy Vingerhoets,et al.  Knowing about tools: Neural correlates of tool familiarity and experience , 2008, NeuroImage.

[48]  M. L. Lambon Ralph,et al.  The role of the anterior temporal lobes in the comprehension of concrete and abstract words: rTMS evidence , 2009, Cortex.

[49]  M. L. Lambon Ralph,et al.  Conceptual knowledge is underpinned by the temporal pole bilaterally: convergent evidence from rTMS. , 2009, Cerebral cortex.

[50]  Elizabeth Jefferies,et al.  Exploring multimodal semantic control impairments in semantic aphasia: Evidence from naturalistic object use , 2009, Neuropsychologia.

[51]  M. Silveri,et al.  Semantic memory in object use , 2009, Neuropsychologia.

[52]  G. Goldenberg Apraxia and the parietal lobes , 2009, Neuropsychologia.

[53]  G. Goldenberg,et al.  The neural basis of tool use. , 2009, Brain : a journal of neurology.

[54]  J. Mattingley,et al.  Is the mirror neuron system involved in imitation? A short review and meta-analysis , 2009, Neuroscience & Biobehavioral Reviews.

[55]  M. L. Lambon Ralph,et al.  Category-Specific versus Category-General Semantic Impairment Induced by Transcranial Magnetic Stimulation , 2010, Current Biology.

[56]  Richard J. Binney,et al.  The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. , 2010, Cerebral cortex.

[57]  M. L. Lambon Ralph,et al.  The anterior temporal lobe semantic hub is a part of the language neural network: selective disruption of irregular past tense verbs by rTMS. , 2010, Cerebral cortex.

[58]  L. Buxbaum,et al.  Action knowledge, visuomotor activation, and embodiment in the two action systems , 2010, Annals of the New York Academy of Sciences.

[59]  E. Jefferies,et al.  Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation , 2010, Neuropsychologia.

[60]  Mbleton,et al.  The inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: Evidence from a novel direct comparison of distortion-corrected fMRI, rTMS and semantic dementia , 2010 .

[61]  Bradford Z. Mahon,et al.  The Role of the Dorsal Visual Processing Stream in Tool Identification , 2010, Psychological science.

[62]  Emily J. Mayberry,et al.  Coherent concepts are computed in the anterior temporal lobes , 2010, Proceedings of the National Academy of Sciences.