Multiple-soliton solutions for the Lax-Kadomtsev-Petviashvili (Lax-KP) equation

A new completely integrable dispersive equation is derived. The new equation is obtained by extending the Lax fifth-order equation using the sense of the Kadomtsev–Petviashvili (KP) equation in extending the KdV equation. The newly derived Lax–Kadomtsev–Petviashvili (Lax–KP) equation is investigated by using the tanh–coth method and the Hirota bilinear method to derive single soliton solution and N-soliton solutions, respectively. The study highlights the multiple-soliton solutions of the derived completely integrable equation.

[1]  W. Hereman,et al.  The tanh method: I. Exact solutions of nonlinear evolution and wave equations , 1996 .

[2]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[3]  Ryogo Hirota,et al.  Exact Solution of the Sine-Gordon Equation for Multiple Collisions of Solitons , 1972 .

[4]  Abdul-Majid Wazwaz,et al.  The tanh–coth and the sech methods for exact solutions of the Jaulent–Miodek equation , 2007 .

[5]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers equation and the coupled Burgers equations , 2007, Appl. Math. Comput..

[6]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[7]  Abdul-Majid Wazwaz,et al.  Partial differential equations : methods and applications , 2002 .

[8]  Abdul-Majid Wazwaz,et al.  The tanh method for traveling wave solutions of nonlinear equations , 2004, Appl. Math. Comput..

[9]  Abdul-Majid Wazwaz,et al.  The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations , 2007, Appl. Math. Comput..

[10]  W. Malfliet,et al.  The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations , 2004 .

[11]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[12]  Ryogo Hirota,et al.  Exact Solution of the Modified Korteweg-de Vries Equation for Multiple Collisions of Solitons , 1972 .

[13]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method , 2007, Appl. Math. Comput..

[14]  W. Hereman,et al.  The tanh method: II. Perturbation technique for conservative systems , 1996 .

[15]  Willy Hereman,et al.  Symbolic Computation of Conserved Densities for Systems of Nonlinear Evolution Equations , 1997, J. Symb. Comput..

[16]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[17]  Abdul-Majid Wazwaz,et al.  The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations , 2007, Appl. Math. Comput..

[18]  J. Weiss,et al.  On classes of integrable systems and the Painlevé property , 1984 .

[19]  Abdul-Majid Wazwaz,et al.  New solitary-wave special solutions with compact support for the nonlinear dispersive K(m, n) equations , 2002 .

[20]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[21]  Yoshimasa Matsuno,et al.  Bilinear Transformation Method , 1984 .

[22]  W. Hereman,et al.  Symbolic Software for Soliton Theory , 1995 .

[23]  Willy Hereman,et al.  Symbolic methods to construct exact solutions of nonlinear partial differential equations , 1997 .

[24]  Jarmo Hietarinta,et al.  A Search for Bilinear Equations Passing Hirota''s Three-Soliton Condition , 1987 .