Poleward and weakened westerlies during Pliocene warmth

[1]  W. Peltier,et al.  The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity , 2020 .

[2]  Qin Li,et al.  Cenozoic aridification in Northwest China evidenced by paleovegetation evolution , 2020 .

[3]  M. Ionita,et al.  Poleward Shift of the Major Ocean Gyres Detected in a Warming Climate , 2020, Geophysical Research Letters.

[4]  C. Heinze,et al.  230Th Normalization: New Insights on an Essential Tool for Quantifying Sedimentary Fluxes in the Modern and Quaternary Ocean , 2020, Paleoceanography and Paleoclimatology.

[5]  Brady,et al.  A return to large-scale features of Pliocene climate: the Pliocene Model Intercomparison Project Phase 2 , 2020 .

[6]  P. Valdes,et al.  Wind‐Driven Evolution of the North Pacific Subpolar Gyre Over the Last Deglaciation , 2019, Geophysical Research Letters.

[7]  Xiao-dong Liu,et al.  Joint influence of surface erosion and high-latitude ice-sheet extent on Asian dust cycle during the last glacial maximum , 2019, Geological Magazine.

[8]  B. Otto‐Bliesner,et al.  Pliocene and Eocene provide best analogs for near-future climates , 2018, Proceedings of the National Academy of Sciences.

[9]  C. Garzione,et al.  Erg deposition and development of the ancestral Taklimakan Desert (western China) between 12.2 and 7.0 Ma , 2018, Geology.

[10]  X. Fang,et al.  A new record of late Pliocene-early Pleistocene aeolian loess–red clay deposits from the western Chinese Loess Plateau and its palaeoenvironmental implications , 2018 .

[11]  C. Langmuir,et al.  Millennial-scale variations in dustiness recorded in Mid-Atlantic sediments from 0 to 70 ka , 2018 .

[12]  C. Garzione,et al.  Orbital forcing of Plio-Pleistocene climate variation in a Qaidam Basin lake based on paleomagnetic and evaporite mineralogic analysis , 2017, Palaeogeography, Palaeoclimatology, Palaeoecology.

[13]  G. Haug,et al.  Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene , 2017, Science Advances.

[14]  P. Vermeesch,et al.  A constant Chinese Loess Plateau dust source since the late Miocene , 2017, Quaternary Science Reviews.

[15]  T. Herbert,et al.  Paleoproductivity in the northwestern Pacific Ocean during the Pliocene‐Pleistocene climate transition (3.0–1.8 Ma) , 2017 .

[16]  H. Mix Late Miocene uplift of the Tian Shan and Altai and reorganization of Central Asia climate , 2017 .

[17]  Juan M. Lora,et al.  North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum , 2017 .

[18]  J. Ji,et al.  Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene , 2016 .

[19]  N. Mahowald,et al.  Tracing dust input to the global ocean using thorium isotopes in marine sediments: ThoroMap , 2016 .

[20]  Alexis Licht,et al.  Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau , 2016 .

[21]  C. Langmuir,et al.  Hydrothermal iron flux variability following rapid sea level changes , 2016 .

[22]  S. Jaccard,et al.  Tracking eolian dust with helium and thorium: Impacts of grain size and provenance , 2016 .

[23]  Pieter Vermeesch,et al.  Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment , 2015, Nature Communications.

[24]  Pieter Vermeesch,et al.  Quaternary dust source variation across the Chinese Loess Plateau , 2015 .

[25]  R. Tada,et al.  Late Oligocene–early Miocene birth of the Taklimakan Desert , 2015, Proceedings of the National Academy of Sciences.

[26]  Fei Wang,et al.  Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey , 2015 .

[27]  D. Jiang,et al.  Mid-Pliocene westerlies from PlioMIP simulations , 2015, Advances in Atmospheric Sciences.

[28]  D. Lunt,et al.  Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records , 2015, Nature.

[29]  C. Chamberlain,et al.  Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia: Stable isotope evidence , 2014, American Journal of Science.

[30]  G. Foster,et al.  The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site , 2014 .

[31]  G. Haug,et al.  Eolian dust input to the Subarctic North Pacific , 2014 .

[32]  Fei Wang,et al.  Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China , 2014 .

[33]  T. Herbert,et al.  Increased sensitivity of the Plio-Pleistocene northwest Pacific to obliquity forcing , 2013 .

[34]  C. A. Riihimaki,et al.  Time‐transgressive North Atlantic productivity changes upon Northern Hemisphere glaciation , 2013 .

[35]  Gaojun Li,et al.  Binary sources of loess on the Chinese Loess Plateau revealed by U–Pb ages of zircon , 2013, Quaternary Research.

[36]  L. Ding,et al.  Climatic and tectonic controls on sedimentation and erosion during the pliocene-quaternary in the qaidam basin (China) , 2013 .

[37]  Robert M. Graham,et al.  Southern Hemisphere westerly wind changes during the Last Glacial Maximum: model-data comparison , 2013 .

[38]  M. Kageyama,et al.  Southern westerlies in LGM and future (RCP4.5) climates , 2013 .

[39]  N. Mahowald,et al.  Improved dust representation in the Community Atmosphere Model , 2012 .

[40]  K. Billups,et al.  Stable-isotope stratigraphy of the Pliocene–Pleistocene climate transition in the northwestern subtropical Pacific , 2012 .

[41]  G. Haug,et al.  Strengthening of North American dust sources during the late Pliocene (2.7 Ma) , 2012 .

[42]  Lin Ding,et al.  Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications , 2011 .

[43]  Gerald H. Haug,et al.  Southern Ocean dust–climate coupling over the past four million years , 2011, Nature.

[44]  T. Herbert,et al.  Biotic and geochemical evidence for a global latitudinal shift in ocean biogeochemistry and export productivity during the late Pliocene , 2011 .

[45]  A. Roberts,et al.  Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation , 2011 .

[46]  J. Pelletier,et al.  Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau , 2011 .

[47]  A. Ganopolski,et al.  Aeolian dust modeling over the past four glacial cycles with CLIMBER-2 , 2010 .

[48]  Timothy D. Herbert,et al.  Tropical Ocean Temperatures Over the Past 3.5 Million Years , 2010, Science.

[49]  Jianhui Liu,et al.  Rapid fluvial incision along the Yellow River during headward basin integration , 2010 .

[50]  Zhaoyan Liu,et al.  Asian dust transported one full circuit around the globe , 2009 .

[51]  W. Broecker,et al.  Gustiness: The driver of glacial dustiness? , 2009 .

[52]  T. Herbert,et al.  Greatly Expanded Tropical Warm Pool and Weakened Hadley Circulation in the Early Pliocene , 2009, Science.

[53]  Saleem H Ali,et al.  Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2 , 2009, Science.

[54]  Jimin Sun,et al.  New evidence on the age of the Taklimakan Desert , 2009 .

[55]  James K. B. Bishop,et al.  The continental margin is a key source of iron to the HNLC North Pacific Ocean , 2008 .

[56]  C. Clark,et al.  A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice–volcanic interaction , 2008 .

[57]  Atsushi Tani,et al.  Tracing the provenance of fine‐grained dust deposited on the central Chinese Loess Plateau , 2008 .

[58]  I. Held,et al.  Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies , 2007 .

[59]  V. Mosbrugger,et al.  Plio-Quaternary stepwise drying of Asia: Evidence from a 3-Ma pollen record from the Chinese Loess Plateau , 2007 .

[60]  A. Tani,et al.  Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea , 2007 .

[61]  J. Toggweiler,et al.  The Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep Ocean , 2006 .

[62]  Masaru Chiba,et al.  A numerical study of the contributions of dust source regions to the global dust budget , 2006 .

[63]  J. Toggweiler,et al.  Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages , 2006 .

[64]  N. Mahowald,et al.  Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates , 2006 .

[65]  Z. An,et al.  Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chine , 2005 .

[66]  P. Schlosser,et al.  Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition , 2005 .

[67]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[68]  Nathan P. Gillett,et al.  Simulation of Recent Southern Hemisphere Climate Change , 2003, Science.

[69]  M. Fleisher,et al.  Assessing the collection efficiency of Ross Sea sediment traps using 230Th and 231Pa , 2003 .

[70]  Francis E. Grousset,et al.  Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP) , 2003 .

[71]  H. Kawahata,et al.  Fluctuation of biogenic and abiogenic sedimentation on the Shatsky Rise in the western north Pacific during the late Quaternary , 2002 .

[72]  Weihong Qian,et al.  Variations of the Dust Storm in China and its Climatic Control , 2002 .

[73]  Shuzhen Peng,et al.  Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China , 2002, Nature.

[74]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[75]  K. Farley,et al.  An extraterrestrial impact at the Permian-Triassic boundary? , 2001, Science.

[76]  L. Becker An Extraterrestrial Impact at the Permian-Triassic Boundary? , 2001, Science.

[77]  K. Farley,et al.  A 35 Myr record of helium in pelagic limestones from Italy: implications for interplanetary dust accretion from the early Maastrichtian to the middle Eocene , 2001 .

[78]  G. Haug,et al.  Onset of permanent stratification in the subarctic Pacific Ocean , 1999, Nature.

[79]  G. Schmidt,et al.  Simulation of recent northern winter climate trends by greenhouse-gas forcing , 1999, Nature.

[80]  M. Norman,et al.  4He as a tracer of continental dust: A 1.9 million year record of aeolian flux to the west equatorial Pacific Ocean , 1999 .

[81]  K. Farley,et al.  Extraterrestrial 3He in seafloor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and quaternary climate , 1998 .

[82]  D. Rea,et al.  Late Cenozoic eolian deposition in the North Pacific: Asian drying , 1998 .

[83]  A. Rosell‐Melé,et al.  Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) , 1998 .

[84]  S. Love,et al.  Atmospheric entry heating and helium retentivity of interplanetary dust particles , 1997 .

[85]  B. Grieger,et al.  Investigating the sensitivity of the Atmospheric General Circulation Model ECHAM 3 to paleoclimatic boundary conditions , 1996 .

[86]  L. Jijun,et al.  Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic , 1996 .

[87]  R. M. Owen,et al.  Quantitative resolution of eolian continental crustal material and volcanic detritus in North Pacific surface sediment , 1996 .

[88]  D. Patterson,et al.  A 100-kyr periodicity in the flux of extraterrestrial 3He to the sea floor , 1995, Nature.

[89]  K. Farley Cenozoic variations in the flux of interplanetary dust recorded by3He in a deep-sea sediment , 1995, Nature.

[90]  A. Mix,et al.  A comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments , 1995 .

[91]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[92]  D. Rea The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind , 1994 .

[93]  Peter Molnar,et al.  Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon , 1993 .

[94]  A. Nier,et al.  Extraction of helium from individual interplanetary dust particles by step-heating , 1992 .

[95]  P. Froelich,et al.  A simple method for the rapid determination of biogenic opal in pelagic marine sediments , 1989 .

[96]  D. Rea,et al.  Eolian deposition in the northeast Pacific Ocean: Cenozoic history of atmospheric circulation , 1983 .

[97]  J. Welhan Carbon and hydrogen gases in hydrothermal systems: The search for a mantle source , 1981 .

[98]  W. Jenkins,et al.  Determination of tritium by mass spectrometric measurement of 3He , 1976 .

[99]  A. Roberts,et al.  Mechanism for enhanced eolian dust flux recorded in North Pacific Ocean sediments since 4.0 Ma: Aridity or humidity at dust source areas in the Asian interior? , 2019 .

[100]  K. Costa Geochemical fingerprints of paleoceanographic variability in the Subarctic Pacific over the last 500,000 years , 2018 .

[101]  J. Andrews Icebergs and iceberg rafted detritus (IRD) in the North Atlantic: facts and assumptions , 2000 .

[102]  B. D.,et al.  He as a tracer of continental dust : A 1 . 9 million year record of aeolian flux to the west equatorial Pacific Ocean , 1999 .

[103]  Zheng Benxing,et al.  On the problem of Quaternary glaciations, and the extent and patterns of Pleistocene ice cover in the Qinghai-Xizang (Tibet) Plateau , 1998 .

[104]  G. Haug,et al.  Evolution of northwest Pacific sedimentation patterns since 6 Ma (Site 882) , 1995 .

[105]  M. Raymo The Initiation of Northern Hemisphere Glaciation , 1994 .

[106]  M. E. Rayrno THE INITIATION OF NORTHERN HEMISPHERE GLACIATION , 1994 .

[107]  P. Hooker Helium Isotopes in Nature , 1986 .