Riemannian Anosov extension and applications

Let $\Sigma$ be a Riemannian manifold with strictly convex spherical boundary. Assuming absence of conjugate points and that the trapped set is hyperbolic, we show that $\Sigma$ can be isometrically embedded into a closed Riemannian manifold with Anosov geodesic flow. We use this embedding to provide a direct link between the classical Livshits theorem for Anosov flows and the Livshits theorem for the X-ray transform which appears in the boundary rigidity program. Also, we give an application for lens rigidity in a conformal class.

[1]  B. Delarue,et al.  Resonances and Weighted Zeta Functions for Obstacle Scattering via Smooth Models , 2021, Annales Henri Poincaré.

[2]  G. Uhlmann,et al.  Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge , 2017, Annals of Mathematics.

[3]  Thibault Lefeuvre On the s-injectivity of the x-ray transform on manifolds with hyperbolic trapped set , 2018, Nonlinearity.

[4]  Thibault Lefeuvre Local Marked Boundary Rigidity Under Hyperbolic Trapping Assumptions , 2018, The Journal of Geometric Analysis.

[5]  A. Katok,et al.  Flexibility of entropies for surfaces of negative curvature , 2017, Israel Journal of Mathematics.

[6]  C. Pugh,et al.  Anosov geodesic flows for embedded surfaces , 2019 .

[7]  C. Guillarmou,et al.  Marked boundary rigidity for surfaces , 2016, Ergodic Theory and Dynamical Systems.

[8]  C. Guillarmou Lens rigidity for manifolds with hyperbolic trapped set , 2014, 1412.1760.

[9]  G. Uhlmann,et al.  Boundary rigidity with partial data , 2013, 1306.2995.

[10]  D. Burago,et al.  Area minimizers and boundary rigidity of almost hyperbolic metrics , 2010, 1011.1570.

[11]  D. Burago,et al.  Boundary rigidity and filling volume minimality of metrics close to a flat one , 2010 .

[12]  James Vargo A proof of Lens Rigidity in the category of Analytic Metrics , 2008, 0812.0827.

[13]  G. Uhlmann,et al.  Boundary and lens rigidity, tensor tomography and analytic microlocal analysis , 2008 .

[14]  Plamen Stefanov,et al.  Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds , 2007, math/0701595.

[15]  R. Ruggiero Dynamics and global geometry of manifolds without conjugate points , 2007, Ensaios Matemáticos.

[16]  C. Croke RIGIDITY THEOREMS IN RIEMANNIAN GEOMETRY , 2004 .

[17]  G. Uhlmann,et al.  Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.

[18]  G. Uhlmann,et al.  Semiglobal boundary rigidity for Riemannian metrics , 2003 .

[19]  Michihiko Fujii On strong convergence of hyperbolic 3-cone-manifolds whose singular sets have uniformly thick tubular neighborhoods , 2001 .

[20]  F. Farrell,et al.  Nonuniform hyperbolic lattices and exotic smooth structures , 1993 .

[21]  M. Gromov Sign and geometric meaning of curvature , 1991 .

[22]  A. Katok Four applications of conformal equivalence to geometry and dynamics , 1988, Ergodic Theory and Dynamical Systems.

[23]  R. Llave,et al.  Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation , 1986 .

[24]  René Michel,et al.  Sur la rigidité imposée par la longueur des géodésiques , 1981 .

[25]  J. Eschenburg,et al.  Jacobi tensors and Ricci curvature , 1980 .

[26]  R. Mañé Characterizations of AS diffeomorphisms , 1977 .

[27]  R. Gulliver On the variety of manifolds without conjugate points , 1975 .

[28]  P. Eberlein When is a geodesic flow of Anosov type? II , 1973 .