Raising a Hardness Result

This article presents a technique for proving problems hard for classes of the polynomial hierarchy or for PSPACE. The rationale of this technique is that some problem restrictions are able to simulate existential or universal quantifiers. If this is the case, reductions from Quantified Boolean Formulae (QBF) to these restrictions can be transformed into reductions from QBFs having one more quantifier in the front. This means that a proof of hardness of a problem at level n in the polynomial hierarchy can be split into n separate proofs, which may be simpler than a proof directly showing a reduction from a class of QBFs to the considered problem.

[1]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[2]  Dean Allemang,et al.  The Computational Complexity of Abduction , 1991, Artif. Intell..

[3]  Paolo Liberatore,et al.  Redundancy in logic III: Non-monotonic reasoning , 2005, Artif. Intell..

[4]  Georg Gottlob,et al.  On the complexity of propositional knowledge base revision, updates, and counterfactuals , 1992, Artif. Intell..

[5]  Stefan Woltran,et al.  On Solution Correspondences in Answer-Set Programming , 2005, IJCAI.

[6]  Jonathan Stillman,et al.  The Complexity of Propositional Default Logics , 1992, AAAI.

[7]  Torsten Schaub On Constrained Default Theories , 1992, ECAI.

[8]  Jana Koehler,et al.  Planning from Second Principles , 1996, Artif. Intell..

[9]  Georg Gottlob,et al.  The complexity of logic-based abduction , 1993, JACM.

[10]  Francesco M. Donini,et al.  Is Intractability of Non-Monotonic Reasoning a Real Drawback? , 1994, AAAI.

[11]  Georg Gottlob,et al.  Propositional default logics made easier: computational complexity of model checking , 2002, Theor. Comput. Sci..

[12]  Grigoris Antoniou,et al.  A tutorial on default logics , 1999, CSUR.

[13]  Georg Gottlob,et al.  Propositional Circumscription and Extended Closed-World Reasoning are IIp2-Complete , 1993, Theor. Comput. Sci..

[14]  Paolo Liberatore Consistency Defaults , 2007, Stud Logica.

[15]  Bernhard Nebel,et al.  On the computational complexity of assumption-based argumentation for default reasoning , 2002, Artif. Intell..

[16]  Bernhard Nebel,et al.  On the Computational Complexity of Planning and Story Understanding , 1992, ECAI.

[17]  Georg Gottlob,et al.  Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..

[18]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[19]  Georg Gottlob,et al.  The Complexity of Nested Counterfactuals and Iterated Knowledge Base Revisions , 1993, IJCAI.

[20]  Witold Łukaszewicz Considerations on default logic: an alternative approach 1 , 1988 .

[21]  Marco Schaerf,et al.  A Survey of Complexity Results for Nonmonotonic Logics , 1993, J. Log. Program..

[22]  Christer Bäckström,et al.  Planning with Abstraction Hierarchies can be Exponentially Less Efficient , 1995, IJCAI.

[23]  Kazuhisa Makino,et al.  On computing all abductive explanations , 2002, AAAI/IAAI.

[24]  Peter A. Flach,et al.  Abduction and Induction , 2000 .

[25]  Fiora Pirri,et al.  Abduction is not Deduction-in-Reverse , 1996, Log. J. IGPL.

[26]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[27]  Maurizio Lenzerini,et al.  The Complexity of Propositional Closed World Reasoning and Circumscription , 1994, J. Comput. Syst. Sci..

[28]  Edith Hemaspaandra,et al.  The minimization problem for Boolean formulas , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[29]  Georg Gottlob,et al.  Semantics and Complexity of Abduction from Default Theories , 1995, IJCAI.