A Functional Language for Logarithmic Space

More than being just a tool for expressing algorithms, a well-designed programming language allows the user to express her ideas efficiently. The design choices however effect the efficiency of the algorithms written in the languages. It is therefore important to understand how such choices effect the expressibility of programming languages.

[2]  Andreas Goerdt Characterizing Complexity Classes by Higher Type Primitive Recursive Definitions , 1992, Theor. Comput. Sci..

[3]  Isabel Oitavem Characterizing NC with tier 0 pointers , 2004, Math. Log. Q..

[4]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[5]  Neil D. Jones,et al.  Computability and complexity - from a programming perspective , 1997, Foundations of computing series.

[6]  Harry G. Mairson,et al.  Types, potency, and idempotency: why nonlinearity and amnesia make a type system work , 2004, ICFP '04.

[7]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[8]  Neil D. Jones,et al.  Computability and complexity , 1997 .

[9]  Eric Allender,et al.  Rudimentary Reductions Revisited , 1991, Inf. Process. Lett..

[10]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[11]  Harry G. Mairson,et al.  Complexity aspects of programming language design: from logspace to elementary time via proofnets and intersection types , 2004 .

[12]  Martin Hofmann,et al.  Static prediction of heap space usage for first-order functional programs , 2003, POPL '03.

[13]  William D. Clinger Proper tail recursion and space efficiency , 1998, PLDI.

[14]  Arnold Beckmann,et al.  A term rewriting characterization of the polytime functions and related complexity classes , 1996, Arch. Math. Log..

[15]  Isabel Oitavem A term rewriting characterization of the functions computable in polynomial space , 2002, Arch. Math. Log..

[16]  Peter Clote A Safe Recursion Scheme for Exponential Time , 1997, LFCS.

[17]  Neil D. Jones The expressive power of higher-order types or, life without CONS , 2001, J. Funct. Program..

[18]  Assaf J. Kfoury,et al.  Recursion Versus Iteration at Higher-Orders , 1997, FSTTCS.

[19]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[20]  Lawrence C. Paulson,et al.  ML for the working programmer (2. ed.) , 1996 .

[21]  Harry G. Mairson From Hilbert Spaces to Dilbert Spaces: Context Semantics Made Simple , 2002, FSTTCS.

[22]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[23]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[24]  Martin Hofmann,et al.  Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[25]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..

[26]  S. Bellantoni,et al.  Predicative recursion and computational complexity , 1992 .

[27]  Martín Abadi,et al.  Linear logic without boxes , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[28]  Martin Hofmann,et al.  Type Systems For Polynomial-time Computation , 1999 .

[29]  Peter G. Harrison,et al.  Functional Programming , 1988 .

[30]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..