Existence of Dafermos profiles for singular shocks

For a model system of two conservation laws, we show that singular shocks have Defermos profiles.

[1]  Stephen Schecter Undercompressive shock waves and the Dafermos regularization , 2002 .

[2]  F. Dumortier,et al.  Geometric Singular Perturbation Theory Beyond Normal Hyperbolicity , 2001 .

[3]  Stephen Schecter,et al.  Composite Waves in the Dafermos Regularization , 2004 .

[4]  Pavol Brunovský,et al.  Cr-Inclination Theorems for Singularly Perturbed Equations , 1999 .

[5]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[6]  M. Sever Viscous structure of singular shocks , 2002 .

[7]  Peter Szmolyan,et al.  Geometric Analysis of the Singularly Perturbed Planar Fold , 2001 .

[8]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[9]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[10]  Barbara Lee Keyfitz,et al.  A strictly hyperbolic system of conservation laws admitting singular shocks , 1990 .

[11]  B. Deng,et al.  Homoclinic bifurcations with nonhyperbolic equilbria , 1990 .

[12]  Weishi Liu,et al.  Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws , 2004 .

[13]  Stephen Schecter,et al.  Structurally Stable Riemann Solutions , 1996 .

[14]  D. Schaeffer,et al.  Nonstrictly Hyperbolic Conservation Laws with a Parabolic Line , 1993 .

[15]  R. Sanders,et al.  LACK OF HYPERBOLICITY IN THE TWO-FLUID MODEL FOR TWO-PHASE INCOMPRESSIBLE FLOW , 2003 .

[16]  B. Sandstede,et al.  Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .

[17]  B. Keyfitz,et al.  A viscosity approximation to a system of conservation laws with no classical Riemann solution , 1989 .

[18]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[19]  Barbara Lee Keyfitz,et al.  SPACES OF WEIGHTED MEASURES FOR CONSERVATION LAWS WITH SINGULAR SHOCK SOLUTIONS , 1995 .

[20]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[21]  Constantine M. Dafermos,et al.  Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method , 1973 .

[22]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[23]  Athanasios E. Tzavaras,et al.  Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws , 1996 .

[24]  Stephen Schecter,et al.  Computation of Riemann solutions using the Dafermos regularization and continuation , 2004 .

[25]  Christopher K. R. T. Jones,et al.  A Primer on the Exchange Lemma for Fast-Slow Systems , 2001 .

[26]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .