Evolving Intelligent Systems

[1]  Plamen P. Angelov,et al.  Evolving Single- And Multi-Model Fuzzy Classifiers with FLEXFIS-Class , 2007, 2007 IEEE International Fuzzy Systems Conference.

[2]  Stephen Grossberg,et al.  Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps , 1992, IEEE Trans. Neural Networks.

[3]  Nikola K. Kasabov,et al.  ESOM: an algorithm to evolve self-organizing maps from online data streams , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[4]  Plamen P. Angelov,et al.  Adaptive Inferential Sensors Based on Evolving Fuzzy Models , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Plamen P. Angelov,et al.  Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier , 2015, Neurocomputing.

[6]  Plamen P. Angelov,et al.  Stability of Evolving Fuzzy Systems Based on Data Clouds , 2018, IEEE Transactions on Fuzzy Systems.

[7]  Plamen P. Angelov,et al.  A Massively Parallel Deep Rule-Based Ensemble Classifier for Remote Sensing Scenes , 2018, IEEE Geoscience and Remote Sensing Letters.

[8]  Renxia Wan,et al.  A Weighted Fuzzy Clustering Algorithm for Data Stream , 2008, 2008 ISECS International Colloquium on Computing, Communication, Control, and Management.

[9]  N. Sundararajan,et al.  Extended sequential adaptive fuzzy inference system for classification problems , 2011, Evol. Syst..

[10]  Iti Saha Misra,et al.  Predicting activity occurrence time in smart homes with evolving fuzzy models , 2017, 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[11]  Plamen P. Angelov,et al.  A new type of simplified fuzzy rule-based system , 2012, Int. J. Gen. Syst..

[12]  Edwin Lughofer,et al.  FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi–Sugeno Fuzzy Models , 2008, IEEE Transactions on Fuzzy Systems.

[13]  Xiaowei Zhou,et al.  Real-time joint Landmark Recognition and Classifier Generation by an Evolving Fuzzy System , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[14]  Chee Peng Lim,et al.  A Hybrid Art-grnn Online Learning Neural Network with a -insensitive Loss Function , 2022 .

[15]  Plamen Angelov,et al.  Evolving Inferential Sensors in the Chemical Process Industry , 2010 .

[16]  Plamen P. Angelov,et al.  Soft sensor for predicting crude oil distillation side streams using evolving takagi-sugeno fuzzy models , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[17]  F. Gomide,et al.  Participatory Evolving Fuzzy Modeling , 2006, 2006 International Symposium on Evolving Fuzzy Systems.

[18]  Nikola K. Kasabov,et al.  Evolving connectionist systems for knowledge discovery from gene expression data of cancer tissue , 2003, Artif. Intell. Medicine.

[19]  Plamen Angelov,et al.  Evolving Takagi‐Sugeno Fuzzy Systems from Streaming Data (eTS+) , 2010 .

[20]  D.P. Filev,et al.  An approach to online identification of Takagi-Sugeno fuzzy models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[21]  Plamen P. Angelov,et al.  Evolving Fuzzy-Rule-Based Classifiers From Data Streams , 2008, IEEE Transactions on Fuzzy Systems.

[22]  Plamen P. Angelov,et al.  DEC: Dynamically Evolving Clustering and Its Application to Structure Identification of Evolving Fuzzy Models , 2014, IEEE Transactions on Cybernetics.

[23]  Plamen P. Angelov,et al.  Evolving fuzzy systems for data streams: a survey , 2011, WIREs Data Mining Knowl. Discov..

[24]  Plamen P. Angelov,et al.  PANFIS: A Novel Incremental Learning Machine , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[25]  Stefan Wermter,et al.  Emergence of multimodal action representations from neural network self-organization , 2017, Cognitive Systems Research.

[26]  T. Martin McGinnity,et al.  An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network , 2005, Fuzzy Sets Syst..

[27]  Radu-Emil Precup,et al.  An overview on fault diagnosis and nature-inspired optimal control of industrial process applications , 2015, Comput. Ind..

[28]  Paramasivan Saratchandran,et al.  Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction , 2006, Fuzzy Sets Syst..

[29]  Fernando A. C. Gomide,et al.  Evolving possibilistic fuzzy modeling , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[30]  Fernando A. C. Gomide,et al.  Evolving hybrid neural fuzzy network for realized volatility forecasting with jumps , 2014, 2014 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr).

[31]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[32]  Plamen P. Angelov,et al.  Simpl_eClass: Simplified potential-free evolving fuzzy rule-based classifiers , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[33]  Edwin Lughofer,et al.  SparseFIS: Data-Driven Learning of Fuzzy Systems With Sparsity Constraints , 2010, IEEE Transactions on Fuzzy Systems.

[34]  Edwin Lughofer,et al.  Autonomous data stream clustering implementing split-and-merge concepts - Towards a plug-and-play approach , 2015, Inf. Sci..

[35]  Narasimhan Sundararajan,et al.  A Metacognitive Neuro-Fuzzy Inference System (McFIS) for Sequential Classification Problems , 2013, IEEE Transactions on Fuzzy Systems.

[36]  Plamen P. Angelov,et al.  Density-based averaging - A new operator for data fusion , 2013, Inf. Sci..

[37]  Thorsten Joachims,et al.  Detecting Concept Drift with Support Vector Machines , 2000, ICML.

[38]  Edwin Lughofer,et al.  On employing fuzzy modeling algorithms for the valuation of residential premises , 2011, Inf. Sci..

[39]  Stefan Wermter,et al.  An Incremental Self-Organizing Architecture for Sensorimotor Learning and Prediction , 2017, IEEE Transactions on Cognitive and Developmental Systems.

[40]  Stephen R. Marsland,et al.  A self-organising network that grows when required , 2002, Neural Networks.

[41]  Amin Talei,et al.  Rainfall-runoff Modeling Using Dynamic Evolving Neural Fuzzy Inference System with Online Learning , 2016 .

[42]  Plamen P. Angelov,et al.  Identification of evolving fuzzy rule-based models , 2002, IEEE Trans. Fuzzy Syst..

[43]  Plamen P. Angelov,et al.  Human Activity Recognition Based on Evolving Fuzzy Systems , 2010, Int. J. Neural Syst..

[44]  Plamen P. Angelov,et al.  Semi-supervised deep rule-based approach for image classification , 2018, Appl. Soft Comput..

[45]  Stephen Grossberg,et al.  ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures , 1990, Neural Networks.

[46]  Éric Anquetil,et al.  Improving premise structure in evolving Takagi–Sugeno neuro-fuzzy classifiers , 2010, 2010 Ninth International Conference on Machine Learning and Applications.

[47]  Hiroyuki Watanabe,et al.  Application of a fuzzy discrimination analysis for diagnosis of valvular heart disease , 1994, IEEE Trans. Fuzzy Syst..

[48]  Plamen P. Angelov,et al.  Evolving local means method for clustering of streaming data , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[49]  Abdelhamid Bouchachia,et al.  An evolving classification cascade with self-learning , 2010, Evol. Syst..

[50]  Mahardhika Pratama,et al.  Online identification of complex multi-input-multi-output system based on generic evolving neuro-fuzzy inference system , 2013, 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS).

[51]  Fernando A. C. Gomide,et al.  An enhanced approach for evolving participatory learning fuzzy modeling , 2012, 2012 IEEE Conference on Evolving and Adaptive Intelligent Systems.

[52]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[53]  Plamen P. Angelov,et al.  Unsupervised classification of data streams based on Typicality and Eccentricity Data Analytics , 2016, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[54]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[55]  T. Martin McGinnity,et al.  On utilizing self-organizing fuzzy neural networks for financial forecasts in the NN5 forecasting competition , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[56]  Plamen Angelov,et al.  Fully online clustering of evolving data streams into arbitrarily shaped clusters , 2017, Inf. Sci..

[57]  Plamen P. Angelov,et al.  Online self-evolving fuzzy controller for autonomous mobile robots , 2011, 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS).

[58]  Ludmila I. Kuncheva,et al.  How good are fuzzy If-Then classifiers? , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[59]  Plamen P. Angelov,et al.  Autonomous novelty detection and object tracking in video streams using evolving clustering and Takagi-Sugeno type neuro-fuzzy system , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[60]  L.O. Hall,et al.  Online fuzzy c means , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[61]  Plamen Angelov,et al.  Evolving Intelligent Systems: Methodology and Applications , 2010 .

[62]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[63]  Plamen Angelov,et al.  Evolving Rule-Based Models: A Tool For Design Of Flexible Adaptive Systems , 2002 .

[64]  Robert Babuška,et al.  An overview of fuzzy modeling for control , 1996 .

[65]  Dejan Dovzan,et al.  Implementation of an Evolving Fuzzy Model (eFuMo) in a Monitoring System for a Waste-Water Treatment Process , 2015, IEEE Transactions on Fuzzy Systems.

[66]  P. Angelov,et al.  Evolving rule-based models: A tool for intelligent adaptation , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[67]  Plamen P. Angelov,et al.  Simplified fuzzy rule-based systems using non-parametric antecedents and relative data density , 2011, 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS).

[68]  Ronald R. Yager,et al.  Simplified evolving rule-based fuzzy modeling of realized volatility forecasting with jumps , 2013, 2013 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr).

[69]  Plamen P. Angelov,et al.  Autonomous visual self-localization in completely unknown environment , 2007, 2012 IEEE Conference on Evolving and Adaptive Intelligent Systems.

[70]  Igor Skrjanc,et al.  A practical implementation of self-evolving cloud-based control of a pilot plant , 2013, 2013 IEEE International Conference on Cybernetics (CYBCO).

[71]  P. Angelov,et al.  Evolving Fuzzy Systems from Data Streams in Real-Time , 2006, 2006 International Symposium on Evolving Fuzzy Systems.

[72]  Lawrence O. Hall,et al.  A fuzzy c means variant for clustering evolving data streams , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[73]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[74]  Maxim Sviridenko,et al.  An Algorithm for Online K-Means Clustering , 2014, ALENEX.

[75]  Fernando Gomide,et al.  Evolving Possibilistic Fuzzy Modeling for Realized Volatility Forecasting With Jumps , 2017, IEEE Transactions on Fuzzy Systems.