Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells.

Bismuth is doped to lanthanum strontium ferrite to produce ferrite-based perovskites with a composition of La(0.8-x)Bi(x)Sr0.2FeO(3-δ) (0 ≤ x ≤ 0.8) as novel cathode material for intermediate-temperature solid oxide fuel cells. The perovskite properties including oxygen nonstoichiometry coefficient (δ), average valence of Fe, sinterability, thermal expansion coefficient, electrical conductivity (σ), oxygen chemical surface exchange coefficient (K(chem)), and chemical diffusion coefficient (D(chem)) are explored as a function of bismuth content. While σ decreases with x due to the reduced Fe(4+) content, D(chem) and K(chem) increase since the oxygen vacancy concentration is increased by Bi doping. Consequently, the electrochemical performance is substantially improved and the interfacial polarization resistance is reduced from 1.0 to 0.10 Ω cm(2) at 700 °C with Bi doping. The perovskite with x = 0.4 is suggested as the most promising composition as solid oxide fuel cell cathode material since it has demonstrated high electrical conductivity and low interfacial polarization resistance.

[1]  Meilin Liu,et al.  Sheet Resistance in Thin Film Solid Oxide Fuel Cell Model Cathodes: A Case Study on Circular Bi1-xSrxFeO3-δ Microelectrodes , 2012 .

[2]  R. Gorte,et al.  The effect of A-site cation (Ln = La, Pr, Sm) on the crystal structure, conductivity and oxygen reduction properties of Sr-doped ferrite perovskites , 2012 .

[3]  Lei Zhang,et al.  Enhancing oxygen surface exchange coefficients of strontium-doped lanthanum manganates with electrolytes , 2012 .

[4]  A. Wedig,et al.  Fast oxygen exchange kinetics of pore-free Bi(1-x)Sr(x)FeO(3-δ) thin films. , 2011, Physical chemistry chemical physics : PCCP.

[5]  Maneesh K. Gupta,et al.  Small polaron hopping conduction mechanism in Fe doped LaMnO3. , 2011, The Journal of chemical physics.

[6]  F. Chen,et al.  Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles , 2011 .

[7]  Zongping Shao,et al.  A Comparative Study of Oxygen Reduction Reaction on Bi- and La-Doped SrFeO3 − δ Perovskite Cathodes , 2011 .

[8]  Zongping Shao,et al.  Evaluation and optimization of Bi1−xSrxFeO3−δ perovskites as cathodes of solid oxide fuel cells , 2011 .

[9]  S. Sun,et al.  Electrochemical properties of La0.8Sr0.2FeO3 − δ–La0.45Ce0.55O2 − δ composite cathodes for intermediate temperature SOFC , 2010 .

[10]  F. Chen,et al.  A high performance intermediate-temperature solid oxide fuel cell using impregnated La0.6Sr0.4CoO3−δ cathode , 2009 .

[11]  Y. Shao-horn Oxygen Surface Exchange Kinetics on Sr-Substituted Lanthanum Manganite and Ferrite Thin-Film Microelectrodes , 2009 .

[12]  Haifu Huang,et al.  The magnetic properties of polycrystalline Bi1−xSrxFeO3 ceramics , 2009 .

[13]  L. M. Rodriguez-Martinez,et al.  Reactivity between La(Sr)FeO3 cathode, doped CeO2 interlayer and yttria-stabilized zirconia electrolyte for solid oxide fuel cell applications , 2008 .

[14]  Bei-bei Liu,et al.  High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells , 2008 .

[15]  J. Alonso,et al.  A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy , 2007 .

[16]  J. Vohs,et al.  A Comparison of LSM, LSF, and LSCo for Solid Oxide Electrolyzer Anodes , 2006 .

[17]  F. Tietz,et al.  Electrical conductivity and thermal expansion of La0.8Sr0.2(Mn,Fe,Co)O3-δ perovskites , 2006 .

[18]  S. Jiang,et al.  Activation, microstructure, and polarization of solid oxide fuel cell cathodes , 2006 .

[19]  D. Edwards,et al.  Microstructural and High-Temperature Electrical Characterization of La1 − xSrxFeO3 − δ , 2005 .

[20]  S. Chan,et al.  Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction , 2004 .

[21]  B. Boukamp,et al.  Oxygen transport in La0.6Sr0.4Co1−yFeyO3−δ , 2004 .

[22]  C. Rossignol,et al.  Cathode Materials for Reduced-Temperature SOFCs , 2003 .

[23]  R. Mark Ormerod Solid oxide fuel cells. , 2003, Chemical Society reviews.

[24]  Meilin Liu,et al.  Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs , 2002 .

[25]  Fanglin Chen,et al.  Reduced-Temperature Solid Oxide Fuel Cells Fabricated by Screen Printing , 2001 .

[26]  Michael Krumpelt,et al.  Materials for lower temperature solid oxide fuel cells , 2001 .

[27]  F. Tietz,et al.  Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes , 2000 .

[28]  J. Kilner,et al.  Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation , 2000 .

[29]  John A. Kilner,et al.  Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ , 1999 .

[30]  N. Imanishi,et al.  Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells , 1999 .

[31]  J. E. Elshof,et al.  Oxygen Exchange and Diffusion Coefficients of Strontium‐Doped Lanthanum Ferrites by Electrical Conductivity Relaxation , 1997 .

[32]  William J. Weber,et al.  Electrochemical Properties of Mixed Conducting Perovskites La1 − x M x Co1 − y Fe y O 3 − δ (M = Sr, Ba, Ca) , 1996 .

[33]  William J. Weber,et al.  Electrochemical properties of mixed conducting perovskites La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y}Fe{sub y}O{sub 3{minus}{delta}} (M = Sr, Ba, Ca) , 1996 .

[34]  Meilin Liu,et al.  Effect of Interfacial Resistance on Determination of Transport Properties of Mixed‐Conducting Electrolytes , 1996 .

[35]  I. Yasuda,et al.  Electrical Conductivity and Chemical Diffusion Coefficient of Strontium-Doped Lanthanum Manganites , 1996 .

[36]  Harlan U. Anderson,et al.  Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .

[37]  F. Théobald,et al.  The lone pair concept and the conductivity of bismuth oxides Bi2O3 , 1986 .

[38]  H. Bowen,et al.  ELECTRONIC CONDUCTIVITY, SEEBECK COEFFICIENT, AND DEFECT STRUCTURE OF LANTHANUM STRONTIUM IRON OXIDE (LA1-XSRXFEO3) (X = 0.1, 0.25) , 1983 .

[39]  E. Ruckenstein,et al.  Activation energies to characterize ease of removal of various kinds of oxygen from bismuth molybdate , 1980 .

[40]  Clarence Zener,et al.  Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure , 1951 .

[41]  J. H. van Santen,et al.  Ferromagnetic compounds of manganese with perovskite structure , 1950 .

[42]  C. Xia,et al.  Surface Process of Doped Ceria Reduction by Electrical Conductivity Relaxation , 2012 .

[43]  Michael K. Bane,et al.  High-resolution Fourier-transform infrared spectroscopy of the v6 and Coriolis perturbation allowed v10 modes of ketenimine. , 2011 .

[44]  Meng Guangyao Preparation and electrochemical properties of La_(0.7)Sr_(0.3)FeO_3-Sm_(0.2)Ce_(0.8)O_3 composite cathodes , 2005 .

[45]  Jeffry W. Stevenson,et al.  Development of lanthanum ferrite SOFC cathodes , 2003 .

[46]  Meilin Liu,et al.  Sm 0 . 5 Sr 0 . 5 CoO 3 cathodes for low-temperature SOFCs , 2002 .