Painlevé analysis, auto-Bäcklund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries (KdV) equation

Abstract. There has been considerable interest in the study on the variable-coefficient nonlinear evolution equations in recent years, since they can describe the real situations in many fields of physical and engineering sciences. In this paper, a generalized variable-coefficient KdV (GvcKdV) equation with the external-force and perturbed/dissipative terms is investigated, which can describe the various real situations, including large-amplitude internal waves, blood vessels, Bose-Einstein condensates, rods and positons. The Painlevé analysis leads to the explicit constraint on the variable coefficients for such a equation to pass the Painlevé test. An auto-Bäcklund transformation is provided by use of the truncated Painlevé expansion and symbolic computation. Via the given auto-Bäcklund transformation, three families of analytic solutions are obtained, including the solitonic and periodic solutions.

[1]  E. L. Ince Ordinary differential equations , 1927 .

[2]  A. Osborne,et al.  The inverse scattering transform: Tools for the nonlinear fourier analysis and filtering of ocean surface waves , 1995 .

[3]  Tommaso Brugarino,et al.  Painlevé property, auto‐Bäcklund transformation, Lax pairs, and reduction to the standard form for the Korteweg–De Vries equation with nonuniformities , 1989 .

[4]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[5]  P. Holloway,et al.  A Nonlinear Model of Internal Tide Transformation on the Australian North West Shelf , 1997 .

[6]  B. Tian,et al.  POSITONIC SOLUTIONS OF A VARIABLE-COEFFICIENT KdV EQUATION IN FLUID DYNAMICS AND PLASMA PHYSICS , 2001 .

[7]  Engui Fan,et al.  Auto-Bäcklund transformation and similarity reductions for general variable coefficient KdV equations , 2002 .

[8]  M. J. Vedan,et al.  A variable coefficient Korteweg–de Vries equation: Similarity analysis and exact solution. II , 1986 .

[9]  B. Tian,et al.  (2+1)-dimensional Broer–Kaup system of shallow water waves and similarity solutions with symbolic computation , 2005 .

[10]  Hilmi Demiray,et al.  The effect of a bump on wave propagation in a fluid-filled elastic tube , 2004 .

[11]  Willi-Hans Steeb,et al.  Nonlinear Evolution Equations and Painleve Test , 1988 .

[12]  S. Dost,et al.  Wave propagation in fluid filled nonlinear viscoelastic tubes , 1992 .

[13]  P. Kevrekidis,et al.  Dynamics of Shallow Dark Solitons in a Trapped Gas of Impenetrable Bosons , 2004, cond-mat/0404102.

[14]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[15]  Shanhua Zhu,et al.  Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates , 2002 .

[16]  Bo Tian,et al.  Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation , 2005 .

[17]  Zhao Qiang,et al.  New exact solutions to KdV equations with variable coefficients or forcing , 2004 .

[18]  Bo Tian,et al.  Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers [rapid communication] , 2005 .

[19]  Estimations of the nonlinear properties of the internal wave field off the Israel coast , 1995 .

[20]  Coffey Nonlinear dynamics of vortices in ultraclean type-II superconductors: Integrable wave equations in cylindrical geometry. , 1996, Physical review. B, Condensed matter.

[21]  Alfred Ramani,et al.  The Painlevé property and singularity analysis of integrable and non-integrable systems , 1989 .

[22]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[23]  J. Draayer,et al.  Nonlinear Modes of Liquid Drops as Solitary Waves , 1998, physics/0003076.

[24]  M. Lakshmanan,et al.  Lie transformations, nonlinear evolution equations, and Painlevé forms , 1983 .

[25]  M. J. Vedan,et al.  Auto‐Bäcklund transformation, Lax pairs, and Painlevé property of a variable coefficient Korteweg–de Vries equation. I , 1986 .

[26]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[27]  N. Armesto,et al.  Nuclear structure functions and heavy flavour leptoproduction off the nucleus at small x in perturbative QCD , 2001, hep-ph/0107114.

[28]  M. Zamir,et al.  The Physics of Pulsatile Flow , 2000, Biological Physics Series.

[29]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[30]  A. Degasperis,et al.  Solution by the spectral-transform method of a nonlinear evolution equation including as a special case the cylindrical KdV equation , 1978 .

[31]  Bo Tian,et al.  Transformations for a generalized variable-coefficient Korteweg de Vries model from blood vessels, Bose Einstein condensates, rods and positons with symbolic computation , 2006 .

[32]  Ryogo Hirota,et al.  Exact solutions to the equation describing “cylindrical solitons” , 1979 .

[33]  Y. Stepanyants,et al.  Do internal solitions exist in the ocean , 1989 .

[34]  H. Dai,et al.  Solitary waves in an inhomogeneous rod composed of a general hyperelastic material , 2002 .

[35]  Efim Pelinovsky,et al.  A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone , 1999 .

[36]  R. Grimshaw,et al.  Slowly varying solitary waves. I. Korteweg-de Vries equation , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  Yong Chen,et al.  EXACT TRAVELING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS WITH NONLINEAR TERMS OF ANY ORDER , 2003 .

[38]  Gopal Das,et al.  A new mathematical approach for finding the solitary waves in dusty plasma , 1998 .

[39]  Bo Tian,et al.  Comment on ``Exact solutions of cylindrical and spherical dust ion acoustic waves'' [Phys. Plasmas 10, 4162 (2003)] , 2005 .

[40]  J. Faist,et al.  Observation of an electronic bound state above a potential well , 1992, Nature.

[41]  Solitary longitudinal waves in an inhomogeneous non-linearly elastic rod☆ , 1987 .

[42]  A. Galindo,et al.  On non-autonomous KdV-flows , 1985 .

[43]  M. Kruskal,et al.  New similarity reductions of the Boussinesq equation , 1989 .

[44]  B. Tian,et al.  Variable-coefficient balancing-act method and variable-coefficient KdV equation from fluid dynamics and plasma physics , 2001 .

[45]  Bo Tian,et al.  On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation , 2005 .

[46]  M. Musette Painlevé Analysis for Nonlinear Partial Differential Equations , 1999 .