Periodic Micropatterning of Polyethylene Glycol Diacrylate Hydrogel by Laser Interference Lithography Using Nano‐ and Femtosecond Pulsed Lasers

[1]  J. Aizenberg,et al.  Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft, biomimetic microlens arrays , 2005 .

[2]  Dinsmore,et al.  Phase diagrams of nearly-hard-sphere binary colloids. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Jeffrey A. Hubbell,et al.  Rapid photopolymerization of immunoprotective gels in contact with cells and tissue , 1992 .

[4]  Milan Mrksich,et al.  Micropatterned Surfaces for Control of Cell Shape, Position, and Function , 1998, Biotechnology progress.

[5]  J. Hubbell,et al.  Intraarterial protein delivery via intimally-adherent bilayer hydrogels. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[6]  Frank Mücklich,et al.  Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy , 2007 .

[7]  A. Lasagni,et al.  Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films , 2007 .

[8]  J. A. Hubbell,et al.  Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. , 1994, Journal of biomedical materials research.

[9]  W. Arap,et al.  Bottom-Up Assembly of Hydrogels from Bacteriophage and Au Nanoparticles: The Effect of Cis- and Trans-Acting Factors , 2008, PloS one.

[10]  Chao Wang,et al.  Fabrication of diffractive optical elements with arbitrary surface-relief profile by direct laser writing , 2002 .

[11]  Jennifer L. West,et al.  Three‐Dimensional Biochemical and Biomechanical Patterning of Hydrogels for Guiding Cell Behavior , 2006 .

[12]  Mitsuo Maeda,et al.  Lithographical laser ablation using femtosecond laser , 2004 .

[13]  Jeffrey A. Hubbell,et al.  Photopolymerized hydrogel materials for drug delivery applications , 1995 .

[14]  K. Nelson,et al.  How to make femtosecond pulses overlap. , 1998, Optics letters.

[15]  J. Elisseeff,et al.  Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. , 2000, Journal of biomedical materials research.

[16]  J. Hubbell,et al.  Efficacy of a resorbable hydrogel barrier, oxidized regenerated cellulose, and hyaluronic acid in the prevention of ovarian adhesions in a rabbit model. , 1994, Fertility and sterility.

[17]  Ali Khademhosseini,et al.  A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning. , 2004, Biomaterials.

[18]  J. A. Hubbell,et al.  Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors. , 1995, Biomaterials.

[19]  Saulius Juodkazis,et al.  Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses , 2003 .

[20]  G L Coté,et al.  A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel. , 1999, Analytical chemistry.

[21]  Tianyue Yu,et al.  An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. , 2002, Science.

[22]  C. Barbero,et al.  One‐Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning , 2007 .

[23]  M. C. Rowland,et al.  Photolithographic patterning of polyethylene glycol hydrogels. , 2006, Biomaterials.

[24]  J. Hubbell,et al.  Adhesion prevention with ancrod released via a tissue-adherent hydrogel. , 1996, The Journal of surgical research.

[25]  J. Hubbell,et al.  Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. , 1994, Proceedings of the National Academy of Sciences of the United States of America.