Plasticity and stability of visual field maps in adult primary visual cortex

It is important to understand the balance between cortical plasticity and stability in various systems and across spatial scales in the adult brain. Here we review studies of adult plasticity in primary visual cortex (V1), which has a key role in distributing visual information. There are claims of plasticity at multiple spatial scales in adult V1, but a number of inconsistencies in the supporting data raise questions about the extent and nature of such plasticity. Our understanding of the extent of plasticity in V1 is further limited by a lack of quantitative models to guide the interpretation of the data. These problems limit efforts to translate research findings about adult cortical plasticity into significant clinical, educational and policy applications.

[1]  Tobias Bonhoeffer,et al.  Prior experience enhances plasticity in adult visual cortex , 2006, Nature Neuroscience.

[2]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Brian A. Wandell,et al.  Lack of long-term cortical reorganization after macaque retinal lesions , 2005 .

[4]  E Courchesne,et al.  In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. , 1992, Cerebral cortex.

[5]  A. T. Smith,et al.  Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. , 2001, Cerebral cortex.

[6]  Karel Svoboda,et al.  Experience-dependent and cell-type-specific spine growth in the neocortex , 2006, Nature.

[7]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[8]  S. A. Talbot Physiology of the retina and the visual pathway , 1961 .

[9]  C. Gilbert,et al.  Axonal sprouting accompanies functional reorganization in adult cat striate cortex , 1994, Nature.

[10]  J. Kaas,et al.  Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  T. Hensch Critical period plasticity in local cortical circuits , 2005, Nature Reviews Neuroscience.

[12]  Atul K. Jain,et al.  Healing of retinal photocoagulation lesions. , 2008, Investigative ophthalmology & visual science.

[13]  C. Gilbert,et al.  Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  D. J. Bradley Night Vision: Basic, Clinical and Applied Aspects , 1991 .

[15]  R. Tootell,et al.  Projection of rods and cones within human visual cortex , 2000, Human brain mapping.

[16]  R. Gregory Concepts and mechanisms of perception , 1974 .

[17]  D. L. Adams,et al.  Shadows Cast by Retinal Blood Vessels Mapped in Primary Visual Cortex , 2002, Science.

[18]  C. Kennard,et al.  Can visual function be restored in patients with homonymous hemianopia? , 1997, The British journal of ophthalmology.

[19]  G. Jones,et al.  Extreme vestibulo‐ocular adaptation induced by prolonged optical reversal of vision , 1976, The Journal of physiology.

[20]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  Eric I Knudsen,et al.  Anatomical traces of juvenile learning in the auditory system of adult barn owls , 2005, Nature Neuroscience.

[22]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  P. Sieving,et al.  CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. , 2007, Investigative ophthalmology & visual science.

[24]  U. Eysel,et al.  A functional sign of reorganization in the visual system of adult cats: Lateral geniculate neurons with displaced receptive fields after lesions of the nasal retina , 1980, Brain Research.

[25]  M. Rosa,et al.  Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex. , 1995, The Journal of physiology.

[26]  A. Gouws,et al.  The Organization of the Visual Cortex in Patients with Scotomata Resulting from Lesions of the Central Retina , 2009 .

[27]  C. Gilbert,et al.  Perceptual learning and adult cortical plasticity , 2009, The Journal of physiology.

[28]  D G Gadian,et al.  The reorganization of sensorimotor function in children after hemispherectomy. A functional MRI and somatosensory evoked potential study. , 2000, Brain : a journal of neurology.

[29]  William Albert Hugh Rushton,et al.  The Ferrier Lecture, 1962 Visual adaptation , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[30]  Jon H. Kaas,et al.  Pulvinar contributions to the dorsal and ventral streams of visual processing in primates , 2007, Brain Research Reviews.

[31]  C. Shatz,et al.  Neuronal plasticity and cellular immunity: shared molecular mechanisms , 2001, Current Opinion in Neurobiology.

[32]  F. Rieke,et al.  Light adaptation in cone vision involves switching between receptor and post-receptor sites , 2007, Nature.

[33]  T. Wiesel,et al.  Receptive field dynamics in adult primary visual cortex , 1992, Nature.

[34]  F A Miles,et al.  Frequency-selective adaptation: evidence for channels in the vestibulo- ocular reflex? , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[36]  Ingeborg Krägeloh-Mann,et al.  Imaging of early brain injury and cortical plasticity , 2004, Experimental Neurology.

[37]  N. Kanwisher,et al.  Feedback of pVisual Object Information to Foveal Retinotopic Cortex , 2008, Nature Neuroscience.

[38]  N. Logothetis,et al.  Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[39]  S. Jacobson,et al.  Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. , 2002, American journal of human genetics.

[40]  E. Seidemann,et al.  Optimal temporal decoding of neural population responses in a reaction-time visual detection task. , 2008, Journal of neurophysiology.

[41]  D. Baylor,et al.  Photoreceptor signals and vision. Proctor lecture. , 1987, Investigative ophthalmology & visual science.

[42]  増田 洋一郎 V1 projection zone signals in human macular degeneration depend on task, not stimulus , 2008 .

[43]  S. Ullman,et al.  Neuroscience: Rewiring the adult brain , 2005, Nature.

[44]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  W. Pan,et al.  Targeting neurite growth inhibitors to induce CNS regeneration. , 2005, Current pharmaceutical design.

[46]  U. Eysel,et al.  Recovery of function is not associated with proliferation of retinogeniculate synapses after chronic deafferentation in the dorsal lateral geniculate nucleus of the adult cat , 1984, Neuroscience Letters.

[47]  Yevgeniy B. Sirotin,et al.  Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. , 2009, Nature.

[48]  R. Hess,et al.  Night vision : basic, clinical, and applied aspects , 1990 .

[49]  D. Hubel,et al.  SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. , 1963, Journal of neurophysiology.

[50]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[51]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[52]  Taosheng Liu,et al.  Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration. , 2004, Ophthalmology.

[53]  D. Mitchell,et al.  Period of susceptibility of kitten visual cortex to the effects of monocular deprivation extends beyond six months of age , 1980, Brain Research.

[54]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[55]  R. W. Rodieck The First Steps in Seeing , 1998 .

[56]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[57]  K. Huxlin Perceptual plasticity in damaged adult visual systems , 2008, Vision Research.

[58]  E. Quinlan,et al.  Visual Deprivation Reactivates Rapid Ocular Dominance Plasticity in Adult Visual Cortex , 2006, The Journal of Neuroscience.

[59]  Mary Hayhoe,et al.  Perceptual Relearning of Complex Visual Motion after V1 Damage in Humans , 2009, The Journal of Neuroscience.

[60]  Daniel D. Dilks,et al.  Reorganization of visual processing in macular degeneration: Replication and clues about the role of foveal loss , 2008, Vision Research.

[61]  A. Metha,et al.  Artificial scotoma-induced perceptual distortions are orientation dependent and short lived , 2004, Visual Neuroscience.

[62]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[63]  C. Gilbert,et al.  Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex , 1995, Nature.

[64]  U. Eysel,et al.  Dynamics and specificity of cortical map reorganization after retinal lesions. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  N. Kanwisher,et al.  Reorganization of Visual Processing in Macular Degeneration , 2005, The Journal of Neuroscience.

[66]  Ikuya Murakami,et al.  Neural responses in the primary visual cortex of the monkey during perceptual filling-in at the blind spot , 2002, Neuroscience Research.

[67]  S. Pollak Early adversity and mechanisms of plasticity: Integrating affective neuroscience with developmental approaches to psychopathology , 2005, Development and Psychopathology.

[68]  J. Donoghue,et al.  Cortically controlled brain-machine interface , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[69]  J. Grafman,et al.  Imaging cortical anatomy by high‐resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17 , 2002, Magnetic resonance in medicine.

[70]  R. Sireteanu,et al.  Squint‐induced Modification of Visual Receptive Field in the Lateral Suprasylvian Cortex of the Cat: Binocul Interaction, Vertical Effect and Anomalous Correspondence , 1992, The European journal of neuroscience.

[71]  B. Wandell,et al.  V1 projection zone signals in human macular degeneration depend on task, not stimulus. , 2008, Cerebral cortex.

[72]  M. Stryker,et al.  Local GABA circuit control of experience-dependent plasticity in developing visual cortex. , 1998, Science.

[73]  H. Komatsu,et al.  Perceptual filling-in at the scotoma following a monocular retinal lesion in the monkey , 1997, Visual Neuroscience.

[74]  Jerald D. Kralik,et al.  Chronic, multisite, multielectrode recordings in macaque monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  C. Shatz,et al.  Functional requirement for class I MHC in CNS development and plasticity. , 2000, Science.

[76]  H. Hirsch,et al.  Deficits in binocular depth perception in cats after alternating monocular deprivation , 1975, Science.

[77]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[78]  W. Burke,et al.  Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layers , 2000, The Journal of physiology.

[79]  F A Miles,et al.  Visually induced adaptive changes in primate saccadic oculomotor control signals. , 1985, Journal of neurophysiology.

[80]  N. Daw,et al.  Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor , 2005, Science.

[81]  Brian A. Wandell,et al.  Chromatic Light Adaptation Measured using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[82]  J. B. Levitt,et al.  Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. , 2002, Progress in brain research.

[83]  Nikos K. Logothetis,et al.  Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex , 2009, PloS one.

[84]  T. Bonhoeffer,et al.  Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex , 2008, Nature Neuroscience.

[85]  J. Horton,et al.  Monocular Core Zones and Binocular Border Strips in Primate Striate Cortex Revealed by the Contrasting Effects of Enucleation, Eyelid Suture, and Retinal Laser Lesions on Cytochrome Oxidase Activity , 1998, The Journal of Neuroscience.

[86]  J. Kaas,et al.  Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. , 1990, Science.

[87]  R.R. Harrison,et al.  HermesC: Low-Power Wireless Neural Recording System for Freely Moving Primates , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[88]  A. A. Skavenski,et al.  Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey , 2004, Experimental Brain Research.

[89]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[90]  C. Shatz,et al.  PirB Restricts Ocular-Dominance Plasticity in Visual Cortex , 2006, Science.

[91]  U. Eysel,et al.  Functional Plasticity in the Mature Visual System: Changes of the Retino-geniculate Topography After Chronic Visual Deafferentation , 1979 .

[92]  P. Matthews,et al.  Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. , 2005, Journal of vision.

[93]  Christine C. Boucard,et al.  Changes in cortical grey matter density associated with long-standing retinal visual field defects , 2009, Brain : a journal of neurology.

[94]  Karl R. Gegenfurtner,et al.  Color Vision: From Genes to Perception , 1999 .

[95]  U. Eysel,et al.  Time-dependent decrease in the extent of visual deafferentation in the lateral geniculate nucleus of adult cats with small retinal lesions , 2004, Experimental Brain Research.

[96]  G Westheimer,et al.  A quantitative measure for short-term cortical plasticity in human vision , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[97]  N. Logothetis,et al.  Lack of long-term cortical reorganization after macaque retinal lesions , 2005, Nature.

[98]  J. B. Levitt,et al.  The spatial extent over which neurons in macaque striate cortex pool visual signals , 2002, Visual Neuroscience.

[99]  R. Freeman,et al.  Developmental Neurobiology of Vision , 1979, NATO Advanced Study Institutes Series.

[100]  D. Hubel,et al.  RECEPTIVE FIELDS OF CELLS IN STRIATE CORTEX OF VERY YOUNG, VISUALLY INEXPERIENCED KITTENS. , 1963, Journal of neurophysiology.

[101]  M. Rosa,et al.  Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions. , 1996, Cerebral cortex.

[102]  Eric I. Knudsen,et al.  Incremental training increases the plasticity of the auditory space map in adult barn owls , 2002, Nature.

[103]  D. Cicchetti,et al.  Editorial: Operationalizing child maltreatment: Developmental processes and outcomes , 2001, Development and Psychopathology.

[104]  F. Duffy,et al.  Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex , 1985, The Journal of comparative neurology.

[105]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[106]  L. Maffei,et al.  Reactivation of Ocular Dominance Plasticity in the Adult Visual Cortex , 2002, Science.

[107]  D E Mitchell,et al.  Behavioral evidence for prolonged sensitivity to effects of monocular deprivation in dark-reared cats. , 1980, Journal of neurophysiology.

[108]  M. Glickstein,et al.  Receptors in the monochromat eye , 1975, Vision Research.

[109]  Jonathan C Horton,et al.  The Representation of Retinal Blood Vessels in Primate Striate Cortex , 2003, The Journal of Neuroscience.

[110]  D. Cicchetti,et al.  Operationalizing child maltreatment: developmental processes and outcomes. , 2001, Development and psychopathology.

[111]  J. Kaas,et al.  Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina , 1992, Vision Research.

[112]  M. Pettet,et al.  Dynamic changes in receptive-field size in cat primary visual cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[113]  I. Ohzawa,et al.  Receptive field structure in the visual cortex: does selective stimulation induce plasticity? , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Kevin P. Moloney,et al.  Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration. , 2008, Restorative neurology and neuroscience.

[115]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[116]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[117]  D E Mitchell,et al.  Prolonged sensitivity to monocular deprivation in dark-reared cats. , 1980, Journal of neurophysiology.

[118]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[119]  G. Jones,et al.  Short‐term adaptive changes in the human vestibulo‐ocular reflex arc , 1976, The Journal of physiology.

[120]  Visual fields of cats reared with one eye intorted , 1979, Brain Research.

[121]  R. Dodge,et al.  Habituation to Rotation , 1923 .

[122]  M G Rosa,et al.  Monocular focal retinal lesions induce short–term topographic plasticity in adult cat visual cortex , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[123]  N. Kanwisher,et al.  Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions , 2000, Journal of Cognitive Neuroscience.

[124]  Herbert Jägle,et al.  Reorganization of human cortical maps caused by inherited photoreceptor abnormalities , 2002, Nature Neuroscience.

[125]  N. Logothetis,et al.  Ultra High-Resolution fMRI in Monkeys with Implanted RF Coils , 2002, Neuron.

[126]  Carla J. Shatz,et al.  Immune signalling in neural development, synaptic plasticity and disease , 2004, Nature Reviews Neuroscience.

[127]  R. Werth,et al.  Visual functions without the occipital lobe or after cerebral hemispherectomy in infancy , 2006, The European journal of neuroscience.

[128]  Lawrence C. Sincich,et al.  Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex , 2007, The Journal of Neuroscience.

[129]  H. Komatsu,et al.  Neural Responses in the Retinotopic Representation of the Blind Spot in the Macaque V1 to Stimuli for Perceptual Filling-In , 2000, The Journal of Neuroscience.

[130]  H. Komatsu,et al.  Behavioral evidence of filling-in at the blind spot of the monkey , 1994, Visual Neuroscience.

[131]  Alexander S. Ecker,et al.  Recording chronically from the same neurons in awake, behaving primates. , 2007, Journal of neurophysiology.

[132]  Lars Muckli,et al.  Bilateral visual field maps in a patient with only one hemisphere , 2009, Proceedings of the National Academy of Sciences.

[133]  Olivier P. Faugeras,et al.  The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys , 2003, The Journal of Neuroscience.

[134]  C. Blakemore,et al.  Development of cat visual cortex following rotation of one eye , 1975, Nature.

[135]  Shimon Ullman,et al.  Filling-in of retinal scotomas , 2003, Vision Research.

[136]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[137]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[138]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[139]  C. Shatz,et al.  PirB is a Functional Receptor for Myelin Inhibitors of Axonal Regeneration , 2008, Science.

[140]  M G Rosa,et al.  Retinal detachment induces massive immediate reorganization in visual cortex. , 1995, Neuroreport.

[141]  U. Eysel,et al.  Functional reconnections without new axonal growth in a partially denervated visual relay nucleus , 1982, Nature.

[142]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[143]  G M Jones,et al.  Plasticity in the adult vestibulo-ocular reflex arc. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[144]  P. Sieving,et al.  Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. , 2000, Human molecular genetics.

[145]  L. Benevento,et al.  A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey , 1979, Brain Research.

[146]  E. Quinlan,et al.  Experience-dependent recovery of vision following chronic deprivation amblyopia , 2007, Nature Neuroscience.

[147]  N. Berman,et al.  Mechanism of anomalous retinal correspondence: Maintenance of binocularity with alteration of receptive-field position in the lateral suprasylvian (LS) visual area of strabismic cats , 1991, Visual Neuroscience.

[148]  A. Fournier,et al.  Myelin‐associated inhibitors of axon regeneration , 2003, Journal of neuroscience research.

[149]  W. Gan,et al.  Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex , 2007, Nature Neuroscience.

[150]  Maria V. Sanchez-Vives,et al.  Role of Synaptic and Intrinsic Membrane Properties in Short-Term Receptive Field Dynamics in Cat Area 17 , 2005, The Journal of Neuroscience.

[151]  Takao K Hensch,et al.  Critical period revisited: impact on vision , 2008, Current Opinion in Neurobiology.

[152]  Peter De Weerd,et al.  Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotoma , 1995, Nature.

[153]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[154]  Daniel D. Dilks,et al.  Reorganization of Visual Processing in Macular Degeneration Is Not Specific to the “Preferred Retinal Locus” , 2009, The Journal of Neuroscience.

[155]  A. Angelucci,et al.  Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. , 2006, Progress in brain research.