A high-order harmonic generation apparatus for time- and angle-resolved photoelectron spectroscopy.

We present a table top setup for time- and angle-resolved photoelectron spectroscopy to investigate band structure dynamics of correlated materials driven far from equilibrium by femtosecond laser pulse excitation. With the electron-phonon equilibration time being in the order of 1-2 ps it is necessary to achieve sub-picosecond time resolution. Few techniques provide both the necessary time and energy resolution to map non-equilibrium states of the band structure. Laser-driven high-order harmonic generation is such a technique. In our experiment, a grating monochromator delivers tunable photon energies up to 40 eV. A photon energy bandwidth of 150 meV and a pulse duration of 100 fs FWHM allow us to cover the k-space necessary to map valence bands at different kz and detect outer core states.

[1]  T. Fauster,et al.  Time-resolved photoemission at the Si(100)-Ga surface using a femtosecond higher-harmonic laser source , 2009 .

[2]  G. Schönhense,et al.  Spin resolved photoelectron microscopy using a two-dimensional spin-polarizing electron mirror , 2011 .

[3]  Martin Aeschlimann,et al.  Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft x-ray source. , 2009, Physical review letters.

[4]  G. Rodriguez,et al.  Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy. , 2010, The Review of scientific instruments.

[5]  A. Cavalleri,et al.  Clocking the melting transition of charge and lattice order in 1T-TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy. , 2011, Physical review letters.

[6]  H. A. Durr,et al.  Femtosecond x-ray absorption spectroscopy of spin and orbital angular momentum in photoexcited Ni films during ultrafast demagnetization , 2010, 1002.1656.

[7]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[8]  Richard Haight,et al.  Electron dynamics at surfaces , 1995 .

[9]  M. Alouani,et al.  Magnetic anisotropy in Gd, GdN, and GdFe 2 tuned by the energy of gadolinium 4 f states , 2009 .

[10]  L. Kipp,et al.  Vacuum space-charge effects in solid-state photoemission , 2009 .

[11]  Stephen R. Leone,et al.  A laser-based instrument for the study of ultrafast chemical dynamics by soft x-ray-probe photoelectron spectroscopy , 2002 .

[12]  H. Dürr,et al.  Strength of correlation effects in the electronic structure of iron. , 2009, Physical review letters.

[13]  S. Leone,et al.  Photoelectron spectroscopic determination of the energy bandwidths of high-order harmonics (7th–55th) produced by an ultrafast laser in neon , 2000 .

[14]  M M Murnane,et al.  Tabletop soft-x-ray Fourier transform holography with 50 nm resolution. , 2009, Optics letters.

[15]  S. Hüfner,et al.  Photoemission spectroscopy—from early days to recent applications , 2005 .

[16]  L'Huillier,et al.  Coherence control of high-order harmonics. , 1995, Physical review letters.

[17]  R. Holzwarth,et al.  Attosecond spectroscopy in condensed matter , 2007, Nature.

[18]  C. Krellner,et al.  Insight into the f-derived Fermi surface of the heavy-fermion compound YbRh2Si2. , 2011, Physical review letters.

[19]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[20]  M. Aeschlimann,et al.  Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source , 2006 .

[21]  H. Petek,et al.  Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals , 1997 .

[22]  H. Kapteyn,et al.  The laser-assisted photoelectric effect on surfaces , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[23]  A. Bostwick,et al.  Fermi-surface topology and helical antiferromagnetism in heavy lanthanide metals. , 2010, Physical review letters.

[24]  C. Chiang,et al.  High-order harmonic generation at 4 MHz as a light source for time-of-flight photoemission spectroscopy , 2012 .

[25]  Y. Yoshida,et al.  Momentum-resolved ultrafast electron dynamics in superconducting Bi2Sr2CaCu2O(8+δ). , 2010, Physical review letters.

[26]  C. Wahlström,et al.  Design of an extreme-ultraviolet monochromator free from temporal stretching. , 2004, Applied optics.

[27]  Glover,et al.  Generation of femtosecond pulses of synchrotron radiation , 2000, Science.

[28]  P. Wernet,et al.  Femtosecond laser excitation drives ferromagnetic gadolinium out of magnetic equilibrium. , 2012, Physical review letters.

[29]  T. Ohta,et al.  Quasiparticle dynamics in graphene , 2007 .

[30]  Oscar E. Martínez,et al.  Pulse distortions in tilted pulse schemes for ultrashort pulses , 1986 .

[31]  M. Bauer Femtosecond ultraviolet photoelectron spectroscopy of ultra-fast surface processes , 2005 .

[32]  T. Quast,et al.  Characterization of laser-electron interaction at the BESSY II femtoslicing source , 2005 .

[33]  L. Poletto,et al.  Design and characterization of the XUV monochromator for ultrashort pulses at the ARTEMIS facility , 2008, Optical Engineering + Applications.

[34]  U. Kleineberg,et al.  A flexible apparatus for attosecond photoelectron spectroscopy of solids and surfaces. , 2011, The Review of scientific instruments.

[35]  L. Poletto,et al.  Time-compensated grazing-incidence monochromator for extreme-ultraviolet and soft X-ray high-order harmonics , 2004 .

[36]  Jérôme Gaudin,et al.  Femtosecond time-resolved photoelectron spectroscopy with a vacuum-ultraviolet photon source based on laser high-order harmonic generation. , 2011, The Review of scientific instruments.

[37]  F. Schäfers The BESSY Raytrace Program RAY , 2008 .

[38]  M M Murnane,et al.  Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer. , 2007, The Review of scientific instruments.

[39]  U. Heinzmann,et al.  Laser-based apparatus for extended ultraviolet femtosecond time-resolved photoemission spectroscopy , 2001 .

[40]  Z. Shen,et al.  Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3. , 2012, Physical review letters.

[41]  H. Dürr,et al.  Hot-electron-driven enhancement of spin-lattice coupling in Gd and Tb 4f ferromagnets observed by femtosecond x-ray magnetic circular dichroism. , 2010, Physical review letters.

[42]  H. Muller,et al.  Cross-correlation measurements of femtosecond extreme-ultraviolet high-order harmonics , 1996 .

[43]  W. Auwärter,et al.  Spin-polarized Fermi surface mapping , 2002 .

[44]  M. Murnane,et al.  Laser-assisted photoemission from surfaces , 2007, 2007 Quantum Electronics and Laser Science Conference.

[45]  Wilfried Wurth,et al.  Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers , 2008 .

[46]  Helmut Zacharias,et al.  Application of high harmonic radiation in surface science , 2009 .

[47]  N. Bulgakova,et al.  Nonequilibrium magnetization dynamics of gadolinium studied by magnetic linear dichroism in time-resolved 4f core-level photoemission. , 2008, Physical review letters.

[48]  Z. Shen,et al.  Transient Electronic Structure and Melting of a Charge Density Wave in TbTe3 , 2008, Science.

[49]  Meier,et al.  Spin-lattice relaxation time of ferromagnetic gadolinium determined with time-resolved spin-polarized photoemission. , 1991, Physical review letters.

[50]  E. Rotenberg,et al.  Renormalization of bulk magnetic electron states at high binding energies. , 2009, Physical review letters.