A hybrid a posteriori error estimator for conforming finite element approximations

Abstract This paper introduces a hybrid a posteriori error estimator for the conforming finite element method, which may be regarded as a combination of the explicit residual and the improved ZZ error estimators. With comparable cost, the hybrid estimator is more accurate than the residual estimator. It is shown that the hybrid estimator is reliable on all meshes, unlike estimators of the ZZ type. Moreover, the reliability constant is independent of the jump of the diffusion coefficients for elliptic interface problems under the monotonicity assumption of the coefficients. Finally, numerical examples confirm the robustness of the estimator with respect to coefficient jumps and also better effectivity index compared to the residual estimator.

[1]  E. G. Sewell,et al.  Automatic generation of triangulations for piecewise polynomial approximation , 1972 .

[2]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  R. Bruce Kellogg,et al.  On the poisson equation with intersecting interfaces , 1974 .

[5]  Shun Zhang,et al.  Flux Recovery and A Posteriori Error Estimators: Conforming Elements for Scalar Elliptic Equations , 2010, SIAM J. Numer. Anal..

[6]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[7]  Carsten Carstensen,et al.  Estimator competition for Poisson problems , 2010 .

[8]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[9]  Jinchao Xu,et al.  Superconvergent Derivative Recovery for Lagrange Triangular Elements of Degree p on Unstructured Grids , 2007, SIAM J. Numer. Anal..

[10]  Serge Nicaise,et al.  Equilibrated error estimators for discontinuous Galerkin methods , 2008 .

[11]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[12]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[13]  Rüdiger Verfürth,et al.  A Note on Constant-Free A Posteriori Error Estimates , 2009, SIAM J. Numer. Anal..

[14]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[15]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[16]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[17]  Khamron Mekchay,et al.  Convergence of Adaptive Finite Element Methods , 2005 .

[18]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[19]  J. Tinsley Oden,et al.  Research directions in computational mechanics , 2003 .

[20]  Shun Zhang,et al.  Recovery-Based Error Estimator for Interface Problems: Conforming Linear Elements , 2009, SIAM J. Numer. Anal..

[21]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[22]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[23]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[24]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[25]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[26]  Zhiqiang Cai,et al.  Residual-based a posteriori error estimate for interface problems: Nonconforming linear elements , 2015, Math. Comput..

[27]  Martin Petzoldt,et al.  A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..

[28]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[29]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .