Optimal designs of the double sampling X¯ chart with estimated parameters

The double sampling (DS) X¯ chart detects small and moderate mean shifts quickly. Furthermore, this chart can reduce the sample size. The DS X¯ chart is usually investigated assuming that the process parameters are known. Nevertheless, the process parameters are usually unknown and are estimated from an in-control Phase-I dataset. This paper (i) evaluates the performances of the DS X¯ chart when process parameters are estimated by means of a new proposed theoretical method, (ii) shows that performances with estimated parameters are different from that with known parameters, and (iii) proposes three optimal design procedures: the first design minimizes the out-of-control average run length, the second design minimizes the in-control average sample size and the third design minimizes the average extra quadratic loss, by considering the number of Phase-I samples in these three designs. Additionally, for ease of implementation, this paper provides the new optimal parameters specially computed for the DS X¯ chart with estimated parameters, based on the number of Phase-I samples used in practice. These findings will lead to a more economically feasible process monitoring situation, especially when the process parameters are unknown.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Philippe Castagliola,et al.  What are the best sample sizes for the Xbar and CUSUM charts , 2011 .

[3]  George Nenes,et al.  A new approach for the economic design of fully adaptive control charts , 2011 .

[4]  Dan Trietsch,et al.  The Rate of False Signals in Ū Control Charts with Estimated Limits , 2007 .

[5]  Murat Caner Testik,et al.  Conditional and marginal performance of the Poisson CUSUM control chart with parameter estimation , 2007 .

[6]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[7]  Ka Man Lee,et al.  An optimal design algorithm of the SPRT chart for minimizing weighted ATS , 2012 .

[8]  Saddam Akber Abbasi,et al.  On monitoring process variability under double sampling scheme , 2013 .

[9]  Yong Yin,et al.  Supplier risk management: An economic model of P-chart considered due-date and quality risks , 2012 .

[10]  Chun Chieh Tseng,et al.  The effectiveness study of Double Sampling s charts application on destructive testing process , 2010 .

[11]  Zachary G. Stoumbos,et al.  Control charts applying a sequential test at fixed sampling intervals with optional sampling at fixed times , 1993 .

[12]  David He,et al.  An improved double sampling s chart , 2003 .

[13]  Philippe Castagliola,et al.  Computational Statistics and Data Analysis an Ewma Chart for Monitoring the Process Standard Deviation When Parameters Are Estimated , 2022 .

[14]  Connie M. Borror,et al.  Process monitoring for mean shifts for multiple stage processes , 2007 .

[15]  Giovanni Celano,et al.  THE EXACT RUN LENGTH DISTRIBUTION AND DESIGN OF THE S2 CHART WHEN THE IN-CONTROL VARIANCE IS ESTIMATED , 2009 .

[16]  Pei-Hsi Lee,et al.  An economic-statistical design of double sampling control chart , 2009 .

[17]  Antonio Fernando Branco Costa,et al.  X̄ charts with variable sample size , 1994 .

[18]  Murat Caner Testik,et al.  The Effect of Estimated Parameters on Poisson EWMA Control Charts , 2006 .

[19]  Wenhui Zhou,et al.  Optimum design of a new VSS-NP chart with adjusting sampling inspection , 2011 .

[20]  Pei-Hsi Lee,et al.  Non-normality and combined double sampling and variable sampling interval control charts , 2010 .

[21]  Antonio Fernando Branco Costa,et al.  Double sampling $$\overline{X} $$ control chart for a first-order autoregressive moving average process model , 2008 .

[22]  Ying Liu,et al.  An enhanced adaptive CUSUM control chart , 2009 .

[23]  Douglas C. Montgomery,et al.  Statistical quality control : a modern introduction , 2009 .

[24]  David He,et al.  Design of double- and triple-sampling X-bar control charts using genetic algorithms , 2002 .

[25]  Marion R. Reynolds,et al.  Control Charts and the Efficient Allocation of Sampling Resources , 2004, Technometrics.

[26]  Lie-Fern Hsu Note on ‘Design of double- and triple-sampling X-bar control charts using genetic algorithms’ , 2004 .

[27]  P. Croasdale,et al.  Control Charts for a Double-Sampling Scheme Based on Average Production Run Lengths , 1974 .

[28]  Muhammad Riaz,et al.  Design and Analysis of Control Charts for Standard Deviation with Estimated Parameters , 2011 .

[29]  Jean-Jacques Daudin,et al.  Double sampling X charts , 1992 .

[30]  Giovanna Capizzi,et al.  Combined Shewhart–EWMA control charts with estimated parameters , 2010 .

[31]  Yi-Chia Chang,et al.  A Design of s Control Charts with a Combined Double Sampling and Variable Sampling Interval Scheme , 2012 .

[32]  Fred A. Spiring,et al.  A General Class of Loss Functions with Industrial Applications , 1998 .

[33]  Shichang Du,et al.  Minimal Euclidean distance chart based on support vector regression for monitoring mean shifts of auto-correlated processes , 2013 .

[34]  P. Maravelakis,et al.  A CUSUM control chart for monitoring the variance when parameters are estimated , 2011 .

[35]  Antonio Fernando Branco Costa,et al.  X̄ Charts with Variable Parameters , 1999 .

[36]  Philippe Castagliola,et al.  The synthetic [Xbar] chart with estimated parameters , 2011 .

[37]  Fugee Tsung,et al.  A comparison study of effectiveness and robustness of control charts for monitoring process mean , 2012 .

[38]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[39]  Pei-Hsi Lee,et al.  An economic design of combined double sampling and variable sampling interval X¯ control chart , 2012 .

[40]  Pei-Hsi Lee,et al.  An economic design of double sampling X charts for correlated data using genetic algorithms , 2009, Expert Syst. Appl..

[41]  Subhabrata Chakraborti,et al.  Run Length Distribution and Percentiles: The Shewhart Chart with Unknown Parameters , 2007 .

[42]  Philippe Castagliola,et al.  The variable sampling interval X̄ chart with estimated parameters , 2012, Qual. Reliab. Eng. Int..

[43]  David He,et al.  Construction of double sampling s‐control charts for agile manufacturing , 2002 .

[44]  Bhisham C. Gupta,et al.  Statistical Quality Control for the Six Sigma Green Belt , 2007 .

[45]  Philippe Castagliola,et al.  A synthetic double sampling control chart for the process mean , 2010 .

[46]  J. M. Jabaloyes,et al.  Combined double sampling and variable sampling interval X chart , 2002 .

[47]  Antonio Fernando Branco Costa,et al.  Variable parameter and double sampling charts in the presence of correlation: The Markov chain approach , 2011 .

[48]  Ying Zhang,et al.  The Variable Sample Size X¯ Chart with Estimated Parameters , 2012, Qual. Reliab. Eng. Int..

[49]  William H. Woodall,et al.  The Statistical Design of Quality Control Charts , 1985 .

[50]  Thomas P. Ryan,et al.  Statistical methods for quality improvement , 1989 .

[51]  Lie-Fern Hsu Note on 'Construction of Double Sampling s-Control Charts for Agile Manufacturing' , 2007, Qual. Reliab. Eng. Int..