Optimal designs of the double sampling X¯ chart with estimated parameters
暂无分享,去创建一个
Philippe Castagliola | Michael B. C. Khoo | Wei Lin Teoh | W. L. Teoh | Ming Ha Lee | P. Castagliola | M. Khoo
[1] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[2] Philippe Castagliola,et al. What are the best sample sizes for the Xbar and CUSUM charts , 2011 .
[3] George Nenes,et al. A new approach for the economic design of fully adaptive control charts , 2011 .
[4] Dan Trietsch,et al. The Rate of False Signals in Ū Control Charts with Estimated Limits , 2007 .
[5] Murat Caner Testik,et al. Conditional and marginal performance of the Poisson CUSUM control chart with parameter estimation , 2007 .
[6] James M. Lucas,et al. Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .
[7] Ka Man Lee,et al. An optimal design algorithm of the SPRT chart for minimizing weighted ATS , 2012 .
[8] Saddam Akber Abbasi,et al. On monitoring process variability under double sampling scheme , 2013 .
[9] Yong Yin,et al. Supplier risk management: An economic model of P-chart considered due-date and quality risks , 2012 .
[10] Chun Chieh Tseng,et al. The effectiveness study of Double Sampling s charts application on destructive testing process , 2010 .
[11] Zachary G. Stoumbos,et al. Control charts applying a sequential test at fixed sampling intervals with optional sampling at fixed times , 1993 .
[12] David He,et al. An improved double sampling s chart , 2003 .
[13] Philippe Castagliola,et al. Computational Statistics and Data Analysis an Ewma Chart for Monitoring the Process Standard Deviation When Parameters Are Estimated , 2022 .
[14] Connie M. Borror,et al. Process monitoring for mean shifts for multiple stage processes , 2007 .
[15] Giovanni Celano,et al. THE EXACT RUN LENGTH DISTRIBUTION AND DESIGN OF THE S2 CHART WHEN THE IN-CONTROL VARIANCE IS ESTIMATED , 2009 .
[16] Pei-Hsi Lee,et al. An economic-statistical design of double sampling control chart , 2009 .
[17] Antonio Fernando Branco Costa,et al. X̄ charts with variable sample size , 1994 .
[18] Murat Caner Testik,et al. The Effect of Estimated Parameters on Poisson EWMA Control Charts , 2006 .
[19] Wenhui Zhou,et al. Optimum design of a new VSS-NP chart with adjusting sampling inspection , 2011 .
[20] Pei-Hsi Lee,et al. Non-normality and combined double sampling and variable sampling interval control charts , 2010 .
[21] Antonio Fernando Branco Costa,et al. Double sampling $$\overline{X} $$ control chart for a first-order autoregressive moving average process model , 2008 .
[22] Ying Liu,et al. An enhanced adaptive CUSUM control chart , 2009 .
[23] Douglas C. Montgomery,et al. Statistical quality control : a modern introduction , 2009 .
[24] David He,et al. Design of double- and triple-sampling X-bar control charts using genetic algorithms , 2002 .
[25] Marion R. Reynolds,et al. Control Charts and the Efficient Allocation of Sampling Resources , 2004, Technometrics.
[26] Lie-Fern Hsu. Note on ‘Design of double- and triple-sampling X-bar control charts using genetic algorithms’ , 2004 .
[27] P. Croasdale,et al. Control Charts for a Double-Sampling Scheme Based on Average Production Run Lengths , 1974 .
[28] Muhammad Riaz,et al. Design and Analysis of Control Charts for Standard Deviation with Estimated Parameters , 2011 .
[29] Jean-Jacques Daudin,et al. Double sampling X charts , 1992 .
[30] Giovanna Capizzi,et al. Combined Shewhart–EWMA control charts with estimated parameters , 2010 .
[31] Yi-Chia Chang,et al. A Design of s Control Charts with a Combined Double Sampling and Variable Sampling Interval Scheme , 2012 .
[32] Fred A. Spiring,et al. A General Class of Loss Functions with Industrial Applications , 1998 .
[33] Shichang Du,et al. Minimal Euclidean distance chart based on support vector regression for monitoring mean shifts of auto-correlated processes , 2013 .
[34] P. Maravelakis,et al. A CUSUM control chart for monitoring the variance when parameters are estimated , 2011 .
[35] Antonio Fernando Branco Costa,et al. X̄ Charts with Variable Parameters , 1999 .
[36] Philippe Castagliola,et al. The synthetic [Xbar] chart with estimated parameters , 2011 .
[37] Fugee Tsung,et al. A comparison study of effectiveness and robustness of control charts for monitoring process mean , 2012 .
[38] Charles W. Champ,et al. Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .
[39] Pei-Hsi Lee,et al. An economic design of combined double sampling and variable sampling interval X¯ control chart , 2012 .
[40] Pei-Hsi Lee,et al. An economic design of double sampling X charts for correlated data using genetic algorithms , 2009, Expert Syst. Appl..
[41] Subhabrata Chakraborti,et al. Run Length Distribution and Percentiles: The Shewhart Chart with Unknown Parameters , 2007 .
[42] Philippe Castagliola,et al. The variable sampling interval X̄ chart with estimated parameters , 2012, Qual. Reliab. Eng. Int..
[43] David He,et al. Construction of double sampling s‐control charts for agile manufacturing , 2002 .
[44] Bhisham C. Gupta,et al. Statistical Quality Control for the Six Sigma Green Belt , 2007 .
[45] Philippe Castagliola,et al. A synthetic double sampling control chart for the process mean , 2010 .
[46] J. M. Jabaloyes,et al. Combined double sampling and variable sampling interval X chart , 2002 .
[47] Antonio Fernando Branco Costa,et al. Variable parameter and double sampling charts in the presence of correlation: The Markov chain approach , 2011 .
[48] Ying Zhang,et al. The Variable Sample Size X¯ Chart with Estimated Parameters , 2012, Qual. Reliab. Eng. Int..
[49] William H. Woodall,et al. The Statistical Design of Quality Control Charts , 1985 .
[50] Thomas P. Ryan,et al. Statistical methods for quality improvement , 1989 .
[51] Lie-Fern Hsu. Note on 'Construction of Double Sampling s-Control Charts for Agile Manufacturing' , 2007, Qual. Reliab. Eng. Int..