Prediction of Springback After Draw‐Bending Test Using Different Material Models
暂无分享,去创建一个
Within the framework of sheet metal forming, the importance of hardening models for springback predictions has been often emphasized. While some specific applications require very accurate models, in many common situations simpler (isotropic hardening) models may be sufficient. In these conditions, investigation of the impact of hardening models requires well defined test configurations and accurate measurements to generate the reference data. Specific draw-bend tests have been especially conceived for this purpose. In this work, such a draw-bending experimental device has been designed, for use on a biaxial tension machine. Three different steel sheets have been tested (one mild steel sheet and two HSS sheets) with thicknesses between 0.8 and 2 mm. Up to three different back-force levels were used for the tests. Wall curvatures and springback angles were measured. Finite element simulations of the tests were performed. A parameter sensitivity analysis has been carried out in order to determine the numerical parameters ensuring accurate springback results. The tests were simulated using an isotropic hardening model and a combined isotropic-kinematic hardening model. The impact of the hardening model is explored for the various test configurations and conclusions are drawn concerning their relative importance.
[1] M. Schikorra,et al. Springback Analysis of Sheet Metals Regarding Material Hardening , 2005 .