A simplicial algorithm approach to Nash equilibria in concave games
暂无分享,去创建一个
[1] N. Vorob’ev. Equilibrium Points in Bimatrix Games , 1958 .
[2] M. Todd. The Computation of Fixed Points and Applications , 1976 .
[3] Kim C. Border,et al. Fixed point theorems with applications to economics and game theory: Fixed point theorems for correspondences , 1985 .
[4] Jesús A. De Loera,et al. A Polytopal Generalization of Sperner's Lemma , 2002, J. Comb. Theory A.
[5] J. Rosenmüller. On a Generalization of the Lemke–Howson Algorithm to Noncooperative N-Person Games , 1971 .
[6] C. E. Lemke,et al. Equilibrium Points of Bimatrix Games , 1964 .
[7] Zaifu Yang. Computing Equilibria and Fixed Points: The Solution of Nonlinear Inequalities , 1998 .
[8] R. A. Becker,et al. Satisficing behavior, Brouwer’s Fixed Point Theorem and Nash Equilibrium , 2005 .
[9] Zaifu Yang. Computing Equilibria and Fixed Points , 1999 .
[10] J. Geanakoplos. Nash and Walras equilibrium via Brouwer , 2003 .
[11] Robert M. Freund. Combinatorial Theorems on the Simplotope that Generalize Results on the Simplex and Cube , 1986, Math. Oper. Res..
[12] Gerard van der Laan,et al. On the Computation of Fixed Points in the Product Space of Unit Simplices and an Application to Noncooperative N Person Games , 1982, Math. Oper. Res..
[13] H. Kuk. On equilibrium points in bimatrix games , 1996 .
[14] P. Jean-Jacques Herings,et al. Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games , 2002, Games Econ. Behav..