Dispersion simulation and visualization for urban security

We present a system for simulating and visualizing the propagation of dispersive contaminants with an application to urban security. In particular, we simulate airborne contaminant propagation in open environments characterised by sky-scrapers and deep urban canyons. Our approach is based on the multiple relaxation time lattice Boltzmann model (MRTLBM), which can efficiently handle complex boundary conditions such as buildings. In addition, we model thermal effects on the flow field using the hybrid thermal MRTLBM. Our approach can also accommodate readings from various sensors distributed in the environment and adapt the simulation accordingly. We accelerate the computation and efficiently render many buildings with small textures on the GPU. We render streamlines and the contaminant smoke with self-shadowing composited with the textured buildings.

[1]  S. Succi The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2001 .

[2]  Christian Früh,et al.  Constructing 3D City Models by Merging Aerial and Ground Views , 2003, IEEE Computer Graphics and Applications.

[3]  David S. Ebert,et al.  Rendering and animation of gaseous phenomena by combining fast volume and scanline A-buffer techniques , 1990, SIGGRAPH.

[4]  Judith Winterkamp,et al.  Tracer modeling in an urban environment , 1998 .

[5]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  David S. Ebert,et al.  Interactive translucent volume rendering and procedural modeling , 2002, IEEE Visualization, 2002. VIS 2002..

[7]  Cláudio T. Silva,et al.  Proceedings of IEEE Visualization 2006 , 2006 .

[8]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[9]  Klaus Mueller,et al.  The lattice-Boltzmann method for simulating gaseous phenomena , 2004, IEEE Transactions on Visualization and Computer Graphics.

[10]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[11]  Rüdiger Westermann,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, SIGGRAPH Courses.

[12]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[13]  Michael Wimmer,et al.  Instant architecture , 2003, ACM Trans. Graph..

[14]  Eric R. Pardyjak,et al.  Fast response modeling of a two building urban street canyon , 2002 .

[15]  Joe Michael Kniss,et al.  A Model for Volume Lighting and Modeling , 2003, IEEE Trans. Vis. Comput. Graph..

[16]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[17]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[18]  Steven J. Gortler,et al.  Feature-based cellular texturing for architectural models , 2001, SIGGRAPH.

[19]  Scott A. King,et al.  Fast Volume Rendering and Animation of Amorphous Phenomena , 2000, Volume Graphics.

[20]  R. Hodur The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) , 1997 .

[21]  Ken Perlin,et al.  An image synthesizer , 1988 .

[22]  Arie E. Kaufman,et al.  Implementing lattice Boltzmann computation on graphics hardware , 2003, The Visual Computer.

[23]  K. J. Allwine,et al.  OVERVIEW OF URBAN 2000 A Multiscale Field Study of Dispersion through an Urban Environment , 2002 .

[24]  Duc Quang Nguyen,et al.  Smoke simulation for large scale phenomena , 2003, ACM Trans. Graph..

[25]  S. T. Chan,et al.  An Evaluation of Two Advanced Turbulence Models for Simulating the Flow and Dispersion Around Buildings , 2004 .

[26]  Anselmo Lastra,et al.  Simulation of cloud dynamics on graphics hardware , 2003, HWWS '03.

[27]  S. Teller,et al.  RECOVERING FACADE TEXTURE AND MICROSTRUCTURE FROM REAL-WORLD IMAGES , 2002 .

[28]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[29]  Anselmo Lastra,et al.  Physically-based visual simulation on graphics hardware , 2002, HWWS '02.

[30]  Greg Humphreys,et al.  A multigrid solver for boundary value problems using programmable graphics hardware , 2003, HWWS '03.

[31]  Arie E. Kaufman,et al.  Lattice-based flow field modeling , 2004, IEEE Transactions on Visualization and Computer Graphics.

[32]  Klaus Mueller,et al.  Simulating fire with texture splats , 2002, IEEE Visualization, 2002. VIS 2002..

[33]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[34]  P. Lallemand,et al.  Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Hong Qin,et al.  Voxels on Fire , 2003, IEEE Visualization.

[36]  Eitan Grinspun,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.

[37]  Nelson Max,et al.  Texture splats for 3D scalar and vector field visualization , 1993, Proceedings Visualization '93.

[38]  Ye Zhao,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Blowing in the Wind , 2022 .

[39]  Ronald Calhoun,et al.  MULTISCALE MODELING OF AIR FLOW IN SALT LAKE CITY AND THE SURROUNDING REGION , 2001 .

[40]  Arie E. Kaufman,et al.  Voxels on fire [computer animation] , 2003, IEEE Visualization, 2003. VIS 2003..

[41]  Jerome D. Fast,et al.  The VTMX 2000 campaign , 2002 .