On the Uniqueness and Perturbation to the Best Rank-One Approximation of a Tensor
暂无分享,去创建一个
[1] S. Friedland. Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.
[2] Paul Van Dooren,et al. Jacobi Algorithm for the Best Low Multilinear Rank Approximation of Symmetric Tensors , 2013, SIAM J. Matrix Anal. Appl..
[3] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[4] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[5] Pierre Comon,et al. Subtracting a best rank-1 approximation may increase tensor rank , 2009, 2009 17th European Signal Processing Conference.
[6] Lieven De Lathauwer,et al. On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..
[7] Misha Elena Kilmer,et al. Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging , 2013, SIAM J. Matrix Anal. Appl..
[8] Berkant Savas,et al. Handwritten digit classification using higher order singular value decomposition , 2007, Pattern Recognit..
[9] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[10] Alwin Stegeman,et al. A Three-Way Jordan Canonical Form as Limit of Low-Rank Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..
[11] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[12] Yao-Lin Jiang,et al. Subtracting a best rank‐1 approximation from p × p × 2(p≥2) tensors , 2012, Numer. Linear Algebra Appl..
[13] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[14] L. Qi,et al. Singular values of a real rectangular tensor , 2010 .
[15] Andrzej Cichocki,et al. Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..
[16] Pierre Comon,et al. Tensor Decompositions, State of the Art and Applications , 2002 .
[17] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[18] Shmuel Friedland,et al. The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors , 2012, Found. Comput. Math..
[19] Hongyuan Zha,et al. Structure and Perturbation Analysis of Truncated SVDs for Column-Partitioned Matrices , 2000, SIAM J. Matrix Anal. Appl..
[20] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[21] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[22] Lieven De Lathauwer,et al. On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..