On the Uniqueness and Perturbation to the Best Rank-One Approximation of a Tensor

The uniqueness of the best rank-one approximation of a tensor under the Frobenius norm is a basic and important studying subject in the tensor theory. By introducing the quasi-singular value of a tensor, we present a new sufficient condition under which the best rank-one approximation of a nonzero tensor $\underline{X}\in\mathbb{R}^{d_{1}\times d_{2}\times d_{3}}$ is unique and obtain that the set consisting of all tensors satisfying the sufficient condition is an open and dense set in $\mathbb{R}^{d_{1}\times d_{2}\times d_{3}}$. In addition, we present a necessary and sufficient condition under which the best rank-one approximation of the sum tensor $\underline{\tilde X}=\underline{X} + {\underline E}$ under some assumption on the tensor $\underline{\tilde X}\in\mathbb{R}^{d_{1}\times d_{2}\times d_{3}}$ is equal to the best rank-one approximation of ${\underline X}$. Meanwhile, a numerical algorithm is proposed for computing the quasi-singular value of a tensor. Finally, several testing examples are pr...

[1]  S. Friedland Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.

[2]  Paul Van Dooren,et al.  Jacobi Algorithm for the Best Low Multilinear Rank Approximation of Symmetric Tensors , 2013, SIAM J. Matrix Anal. Appl..

[3]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  Pierre Comon,et al.  Subtracting a best rank-1 approximation may increase tensor rank , 2009, 2009 17th European Signal Processing Conference.

[6]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..

[7]  Misha Elena Kilmer,et al.  Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging , 2013, SIAM J. Matrix Anal. Appl..

[8]  Berkant Savas,et al.  Handwritten digit classification using higher order singular value decomposition , 2007, Pattern Recognit..

[9]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[10]  Alwin Stegeman,et al.  A Three-Way Jordan Canonical Form as Limit of Low-Rank Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..

[11]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[12]  Yao-Lin Jiang,et al.  Subtracting a best rank‐1 approximation from p × p × 2(p≥2) tensors , 2012, Numer. Linear Algebra Appl..

[13]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[14]  L. Qi,et al.  Singular values of a real rectangular tensor , 2010 .

[15]  Andrzej Cichocki,et al.  Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..

[16]  Pierre Comon,et al.  Tensor Decompositions, State of the Art and Applications , 2002 .

[17]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[18]  Shmuel Friedland,et al.  The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors , 2012, Found. Comput. Math..

[19]  Hongyuan Zha,et al.  Structure and Perturbation Analysis of Truncated SVDs for Column-Partitioned Matrices , 2000, SIAM J. Matrix Anal. Appl..

[20]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[21]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[22]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..