A Histology-Based Model of Quantitative T1 Contrast for In-vivo Cortical Parcellation of High-Resolution 7 Tesla Brain MR Images

A conclusive mapping of myeloarchitecture (myelin patterns) onto the cortical sheet and, thus, a corresponding mapping to cytoarchitecture (cell configuration) does not exist today. In this paper we present a generative model which can predict, on the basis of known cytoarchitecture, myeloarchitecture in different primary and non-primary cortical areas, resulting in simulated in-vivo quantitative T1 maps. The predicted patterns can be used in brain parcellation. Our model is validated using a similarity distance metric which enables quantitative comparison of the results with empirical data measured using MRI. The work presented may provide new perspectives for this line of research, both in imaging and in modelling the relationship with myelo- and cytoarchitecture, thus leading the way towards in-vivo histology using MRI.

[1]  B. Hellwig How the myelin picture of the human cerebral cortex can be computed from cytoarchitectural data. A bridge between von Economo and Vogt. , 1993, Journal fur Hirnforschung.

[2]  Xiao Han,et al.  CRUISE: Cortical reconstruction using implicit surface evolution , 2004, NeuroImage.

[3]  Bruce R. Rosen,et al.  High-Resolution and Microscopic Imaging at High Field , 2006 .

[4]  Uwe Aickelin,et al.  Tailored RF pulse optimization for magnetization inversion at ultra high field , 2010, ArXiv.

[5]  Lawrence J. Berliner,et al.  Ultra High Field Magnetic Resonance Imaging , 2006 .

[6]  K. Uğurbil,et al.  Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo , 2007, Magnetic resonance in medicine.

[7]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[8]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[9]  S. Bok Der Einflu\ der in den Furchen und Windungen auftretenden Krümmungen der Gro\hirnrinde auf die Rindenarchitektur , 1929 .

[10]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[11]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[12]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[13]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex – From Brodmann's Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging , 2011, Front. Hum. Neurosci..

[14]  R. Nieuwenhuys The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data , 2013, Brain Structure and Function.

[15]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .