Robust fitting of mixtures of factor analyzers using the trimmed likelihood estimator

ABSTRACT Mixtures of factor analyzers (MFAs) have been popularly used to cluster the high-dimensional data. However, the traditional estimation method is based on the normality assumptions of random terms and thus is sensitive to outliers. In this article, we introduce a robust estimation procedure of MFAs using the trimmed likelihood estimator. We use a simulation study and a real data application to demonstrate the robustness of the trimmed estimation procedure and compare it with the traditional normality-based maximum likelihood estimate.

[1]  Ajay Jasra,et al.  Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling , 2005 .

[2]  Friedrich Leisch,et al.  Dealing with label switching in mixture models under genuine multimodality , 2009, J. Multivar. Anal..

[3]  B. Lindsay,et al.  Bayesian Mixture Labeling by Highest Posterior Density , 2009 .

[4]  Geoffrey J. McLachlan,et al.  Mixtures of common t-factor analyzers for clustering high-dimensional microarray data , 2011, Bioinform..

[5]  Kamel Jedidi,et al.  Bayesian factor analysis for multilevel binary observations , 2000 .

[6]  L. Williams,et al.  Contents , 2020, Ophthalmology (Rochester, Minn.).

[7]  C. Hennig Breakdown points for maximum likelihood estimators of location–scale mixtures , 2004, math/0410073.

[8]  P. Deb Finite Mixture Models , 2008 .

[9]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[10]  Gerhard Arminger,et al.  Mixtures of conditional mean- and covariance-structure models , 1999 .

[11]  Geoffrey J. McLachlan,et al.  Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution , 2007, Comput. Stat. Data Anal..

[12]  Y. Dodge,et al.  Adaptive choice of trimming proportion in trimmed least-squares estimation , 1997 .

[13]  R. Koenker,et al.  Adaptive choice of trimming proportions , 1994 .

[14]  Paul D. McNicholas,et al.  Model-based classification via mixtures of multivariate t-distributions , 2011, Comput. Stat. Data Anal..

[15]  O. Mangasarian,et al.  Multisurface method of pattern separation for medical diagnosis applied to breast cytology. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Weixin Yao,et al.  A Simple Solution to Bayesian Mixture Labeling , 2013, Commun. Stat. Simul. Comput..

[17]  C. Robert,et al.  Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .

[18]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[19]  Peter Filzmoser,et al.  Robust fitting of mixtures using the trimmed likelihood estimator , 2007, Comput. Stat. Data Anal..

[20]  Han L. J. van der Maas,et al.  Fitting multivariage normal finite mixtures subject to structural equation modeling , 1998 .

[21]  Weixin Yao,et al.  Model based labeling for mixture models , 2012, Stat. Comput..

[22]  Geoffrey E. Hinton,et al.  Modeling the manifolds of images of handwritten digits , 1997, IEEE Trans. Neural Networks.

[23]  T. Bednarski,et al.  Adaptive trimmed likelihood estimation in regression , 2010 .

[24]  W. Yao Bayesian Mixture Labeling and Clustering , 2012 .

[25]  Ayoub Ghriss,et al.  Mixtures of Probabilistic Principal Component Analysers , 2018 .

[26]  Christopher M. Bishop Latent Variable Models , 1998, Learning in Graphical Models.

[27]  D. M. Titterington,et al.  Mixtures of Factor Analysers. Bayesian Estimation and Inference by Stochastic Simulation , 2004, Machine Learning.

[28]  Geoffrey J. McLachlan,et al.  Modelling high-dimensional data by mixtures of factor analyzers , 2003, Comput. Stat. Data Anal..

[29]  Christine H. Müller,et al.  Breakdown Point and Computation of Trimmed Likelihood Estimators in Generalized Linear Models , 2003 .

[30]  Yiu-Fai Yung,et al.  Finite mixtures in confirmatory factor-analysis models , 1997 .

[31]  M. Stephens Dealing with label switching in mixture models , 2000 .

[32]  Chun Yu,et al.  Robust mixture regression using the t-distribution , 2014, Comput. Stat. Data Anal..

[33]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[34]  Claus Skaanning,et al.  Markov Chain Monte Carlo Methods , 2006 .