Histone H1 Depletion in Mammals Alters Global Chromatin Structure but Causes Specific Changes in Gene Regulation

[1]  C. Woodcock,et al.  Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length , 2006, Chromosome Research.

[2]  Benjamin S. Freedman,et al.  Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts , 2005, The Journal of cell biology.

[3]  A. Wierzbicki,et al.  Suppression of Histone H1 Genes in Arabidopsis Results in Heritable Developmental Defects and Stochastic Changes in DNA Methylation , 2005, Genetics.

[4]  Tatiana Nikitina,et al.  Dynamic relocation of epigenetic chromatin markers reveals an active role of constitutive heterochromatin in the transition from proliferation to quiescence , 2004, Journal of Cell Science.

[5]  J. Downs,et al.  What functions do linker histones provide? , 2004, Molecular microbiology.

[6]  M. Bartolomei,et al.  Genomic imprinting: intricacies of epigenetic regulation in clusters. , 2003, Annual review of cell and developmental biology.

[7]  J. Cavaille,et al.  Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12 , 2003, Nature Genetics.

[8]  T. Magnuson,et al.  H1 Linker Histones Are Essential for Mouse Development and Affect Nucleosome Spacing In Vivo , 2003, Molecular and Cellular Biology.

[9]  En Li,et al.  Suv 39 h-Mediated Histone H 3 Lysine 9 Methylation Directs DNA Methylation to Major Satellite Repeats at Pericentric Heterochromatin , 2003 .

[10]  T. Richmond,et al.  Chromatin fiber folding: requirement for the histone H4 N-terminal tail. , 2003, Journal of molecular biology.

[11]  Rachel A. Horowitz-Scherer,et al.  Chromatin Compaction by Human MeCP2 ASSEMBLY OF NOVEL SECONDARY CHROMATIN STRUCTURES IN THE ABSENCE OF DNA METHYLATION* , 2003 .

[12]  S. Takada,et al.  Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2-H19. , 2002, Human molecular genetics.

[13]  A. Skoultchi,et al.  Individual Somatic H1 Subtypes Are Dispensable for Mouse Development Even in Mice Lacking the H10Replacement Subtype , 2001, Molecular and Cellular Biology.

[14]  B. Turcotte,et al.  Decreased Expression of Specific Genes in Yeast Cells Lacking Histone H1* , 2001, The Journal of Biological Chemistry.

[15]  S. Elgin,et al.  Long-Range Nucleosome Ordering Is Associated with Gene Silencing in Drosophila melanogaster Pericentric Heterochromatin , 2001, Molecular and Cellular Biology.

[16]  Matthew Tudor,et al.  Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation , 2001, Nature Genetics.

[17]  W. Reik,et al.  Genomic imprinting: parental influence on the genome , 2001, Nature Reviews Genetics.

[18]  Tom Misteli,et al.  Dynamic binding of histone H1 to chromatin in living cells , 2000, Nature.

[19]  S. Tilghman,et al.  The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. , 2000, Genes & development.

[20]  W. Reik,et al.  Genomic imprinting: Silence across the border , 2000, Nature.

[21]  Shirley M. Tilghman,et al.  CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus , 2000, Nature.

[22]  G. Felsenfeld,et al.  Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene , 2000, Nature.

[23]  W. Reik,et al.  Active demethylation of the paternal genome in the mouse zygote , 2000, Current Biology.

[24]  C. Scazzocchio,et al.  Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans , 2000, Molecular Microbiology.

[25]  J. L. Barra,et al.  Histone H1 Is Dispensable for Methylation-Associated Gene Silencing in Ascobolus immersusand Essential for Long Life Span , 2000, Molecular and Cellular Biology.

[26]  J. O. Thomas,et al.  Histone H1: location and role. , 1999, Current opinion in cell biology.

[27]  Jerry L. Workman,et al.  Location and function of linker histones , 1998, Nature Structural Biology.

[28]  A J Koster,et al.  Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Bednar,et al.  Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. , 1998, Biochemistry.

[30]  T. Moore,et al.  Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. , 1998, Development.

[31]  D. Landsman,et al.  The Biochemical and Phenotypic Characterization of Hho1p, the Putative Linker Histone H1 of Saccharomyces cerevisiae * , 1998, The Journal of Biological Chemistry.

[32]  R. Jaenisch,et al.  Sequence-specific methylation of the mouse H19 gene in embryonic cells deficient in the Dnmt-1 gene. , 1998, Developmental genetics.

[33]  C. Woodcock,et al.  Electron microscopic imaging of chromatin with nucleosome resolution. , 1998, Methods in cell biology.

[34]  H. Bussey,et al.  Histone H1 in Saccharomyces cerevisiae , 1997, Yeast.

[35]  Xuetong Shen,et al.  Linker Histone H1 Regulates Specific Gene Expression but Not Global Transcription In Vivo , 1996, Cell.

[36]  R. Jaenisch,et al.  Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. , 1996, Genes & development.

[37]  J. Hansen,et al.  The nucleosomal array: structure/function relationships. , 1996, Critical reviews in eukaryotic gene expression.

[38]  Xuetong Shen,et al.  Linker histories are not essential and affect chromatin condensation in vivo , 1995, Cell.

[39]  R. Kucherlapati,et al.  Mice develop normally without the H1(0) linker histone. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Wolffe,et al.  Nuclear assembly is independent of linker histones. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E. Bradbury,et al.  Linker histones H1 and H5 prevent the mobility of positioned nucleosomes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Clark,et al.  High sensitivity mapping of methylated cytosines. , 1994, Nucleic acids research.

[43]  J. Hansen,et al.  Formation and stability of higher order chromatin structures. Contributions of the histone octamer. , 1994, Journal of Biological Chemistry.

[44]  Rudolf Jaenisch,et al.  Role for DNA methylation in genomic imprinting , 1993, Nature.

[45]  K. V. van Holde,et al.  Histone H1 and transcription: still an enigma? , 1992, Journal of cell science.

[46]  Rudolf Jaenisch,et al.  Targeted mutation of the DNA methyltransferase gene results in embryonic lethality , 1992, Cell.

[47]  F Poirier,et al.  The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. , 1991, Development.

[48]  J. T. Kadonaga,et al.  Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. , 1991, Science.

[49]  C. Woodcock,et al.  Ultrastructure of chromatin. I. Negative staining of isolated fibers. , 1991, Journal of cell science.

[50]  J. Davie,et al.  Histone acetylation alters the capacity of the H1 histones to condense transcriptionally active/competent chromatin. , 1990, The Journal of biological chemistry.

[51]  T. Kimura,et al.  Electrostatic mechanism of chromatin folding. , 1990, Journal of molecular biology.

[52]  A. Shimamura,et al.  Histone H1 represses transcription from minichromosomes assembled in vitro , 1989, Molecular and cellular biology.

[53]  M. Lyon,et al.  Genetic variants and strains of the laboratory mouse , 1989 .

[54]  B D Athey,et al.  Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. , 1986, Biophysical journal.

[55]  A. Feinberg,et al.  A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. , 1983, Analytical biochemistry.

[56]  J. Allan,et al.  Participation of core histone "tails" in the stabilization of the chromatin solenoid , 1982, The Journal of cell biology.

[57]  E. Berkowitz,et al.  Characterization of rat liver oligonucleosomes enriched in transcriptionally active genes: evidence for altered base composition and a shortened nucleosome repeat. , 1981, Biochemistry.

[58]  B. Hamkalo,et al.  Chromatin Structure and Function , 1979, NATO Advanced Study Institutes Series.

[59]  A Klug,et al.  Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin , 1979, The Journal of cell biology.

[60]  Claudio Nicolini,et al.  Chromatin Structure and Function , 1979, NATO Advanced Study Institutes Series.