A dimensionally reduced finite mixture model for multilevel data

Recently, different mixture models have been proposed for multilevel data, generally requiring the local independence assumption. In this work, this assumption is relaxed by allowing each mixture component at the lower level of the hierarchical structure to be modeled according to a multivariate Gaussian distribution with a non-diagonal covariance matrix. For high-dimensional problems, this solution can lead to highly parameterized models. In this proposal, the trade-off between model parsimony and flexibility is governed by assuming a latent factor generative model.

[1]  Jeroen K. Vermunt,et al.  7. Multilevel Latent Class Models , 2003 .

[2]  William R. Atchley,et al.  A MORPHOMETRIC ANALYSIS OF DIFFERENTIAL SEXUAL DIMORPHISM IN LARVAE OF CHIRONOMUS (DIPTERA) , 1971, The Canadian Entomologist.

[3]  H. Bozdogan Determining the Number of Component Clusters in the Standard Multivariate Normal Mixture Model Using Model-Selection Criteria. , 1983 .

[4]  Gregory R. Hancock,et al.  Advances in Latent Variable Mixture Models , 2007 .

[5]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[6]  Jay Magidson,et al.  Hierarchical Mixture Models for Nested Data Structures , 2004, GfKl.

[7]  Adrian E. Raftery,et al.  MCLUST Version 3: An R Package for Normal Mixture Modeling and Model-Based Clustering , 2006 .

[8]  A. Montanari,et al.  Heteroscedastic factor mixture analysis , 2010 .

[9]  Berthold Lausen,et al.  Advances in Data Analysis, Data Handling and Business Intelligence - Proceedings of the 32nd Annual Conference of the Gesellschaft für Klassifikation e.V., Joint Conference with the British Classification Society (BCS) and the Dutch/Flemish Classification Society (VOC), Helmut-Schmidt-University, Ha , 2010, GfKl.

[10]  Jeroen K. Vermunt,et al.  Mixture models for multilevel data sets , 2010 .

[11]  Multilevel Mixture Models , 2006 .

[12]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[13]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[14]  J. Kyle Roberts,et al.  Handbook of advanced multilevel analysis , 2011 .

[15]  Sophia Rabe-Hesketh,et al.  Generalized latent variable models: multilevel, longitudinal, and structural equation models , 2004 .

[16]  Jay Magidson,et al.  LG-Syntax user's guide: Manual for Latent GOLD 4.5 Syntax module , 2008 .

[17]  B. Muthén,et al.  Investigating population heterogeneity with factor mixture models. , 2005, Psychological methods.

[18]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[19]  J. Vermunt Mixed-Effects Logistic Regression Models for Indirectly Observed Discrete Outcome Variables , 2005, Multivariate behavioral research.

[20]  Tom A. B. Snijders,et al.  Multilevel Analysis , 2011, International Encyclopedia of Statistical Science.

[21]  Jeroen K. Vermunt,et al.  Determining the Number of Components in Mixture Models for Hierarchical Data , 2008, GfKl.

[22]  Adrian E. Raftery,et al.  MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering † , 2007 .

[23]  Shane Suzanne Allua,et al.  Evaluation of single- and multilevel factor mixture model estimation , 2007 .

[24]  Jeroen K. Vermunt A hierarchical mixture model for clustering three-way data sets , 2007, Comput. Stat. Data Anal..

[25]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[26]  H. Akaike A new look at the statistical model identification , 1974 .

[27]  Gesellschaft für Klassifikation. Jahrestagung,et al.  Classification - the Ubiquitous Challenge, Proceedings of the 28th Annual Conference of the Gesellschaft für Klassifikation e.V., University of Dortmund, March 9-11, 2004 , 2005, GfKl.

[28]  J. Vermunt,et al.  Latent class and finite mixture models for multilevel data sets , 2008, Statistical methods in medical research.