Gravitational deflection of light and massive particles by a moving Kerr–Newman black hole

The gravitational deflection of test particles including light, due to a radially moving Kerr–Newman (KN) black hole with an arbitrary constant velocity that is perpendicular to its angular momentum, is investigated. In harmonic coordinates, we derive the second post-Minkowskian (2PM) equations of motion for test particles, and solve them by high-accuracy numerical calculations. We then concentrate on discussing the kinematical corrections caused by the motion of the gravitational source to second-order deflection. The analytical formula of the light-deflection angle up to the second order by a moving lens is obtained. For a massive particle moving with a relativistic velocity, there are two different analytical results for the Schwarzschild deflection angle up to the second order reported in the previous works, i.e. α ( w ) = 2 1 + 1 w 2 M b + 3 π 1 4 + 1 w 2 M 2 b 2 and α ( w ) = 2 1 + 1 w 2 M b + 3 π 1 4 + 1 w 2 + 2 1 − 1 w 4 M 2 b 2 , where M , b , and w are the mass of the lens, the impact parameter, and the particle’s initial velocity, respectively. Our numerical result is in perfect agreement with the former result. Furthermore, the analytical formula for massive particle deflection up to the second order in the Kerr geometry is achieved. Finally, the possibilities of detecting the motion effects on the second-order deflection are also analyzed.

[1]  Wenbin Lin,et al.  Second post-Minkowskian order harmonic metric for a moving Kerr-Newman black hole , 2015 .

[2]  M. Soffel,et al.  The gravitational time delay in the field of a slowly moving body with arbitrary multipoles , 2014, 1409.3743.

[3]  A. Sen,et al.  Light deflection due to a charged, rotating body , 2014, 1406.1295.

[4]  Renaud Goullioud,et al.  NEAT: ultra-precise differential astrometry to characterize planetary systems with Earth-mass exoplanets in the vicinity of our Sun , 2014, Astronomical Telescopes and Instrumentation.

[5]  S. Bertone,et al.  Light propagation in the field of a moving axisymmetric body: Theory and applications to the Juno mission , 2014, 1406.6600.

[6]  Wenbin Lin,et al.  Exact and unique metric for Kerr-Newman black hole in harmonic coordinates , 2014 .

[7]  M. Shao,et al.  Formation flying for very high precision astrometry: NEAT and micro-NEAT mission concepts , 2014 .

[8]  C. Le Poncin-Lafitte,et al.  Relativistic formulation of coordinate light time, Doppler and astrometric observables up to the second post-Minkowskian order , 2014, 1401.7622.

[9]  Heidi Jo Newberg,et al.  THE FIRST HYPERVELOCITY STAR FROM THE LAMOST SURVEY , 2014, 1401.5063.

[10]  S. Klioner,et al.  Towards sub-microarcsecond models for relativistic astrometry , 2013, 1312.1821.

[11]  S. Bertone,et al.  Frequency shift up to the 2-PM approximation , 2012, 1210.2577.

[12]  Yong-Heng Zhao,et al.  LAMOST spectral survey — An overview , 2012 .

[13]  Michael Shao,et al.  High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT) , 2011, 1107.3643.

[14]  M. Shao,et al.  Sub-Microarcsecond Astrometry with SIM-Lite: A Testbed-based Performance Assessment , 2008, 0812.1530.

[15]  M. Granvik,et al.  The Gaia Mission: Expected Applications to Asteroid Science , 2007 .

[16]  V. Makarov,et al.  Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers , 2006, Proceedings of the International Astronomical Union.

[17]  K. K. Nandi,et al.  Testing gravity at the second post-Newtonian level through gravitational deflection of massive particles , 2006, gr-qc/0610089.

[18]  A. Edery,et al.  Second order Kerr deflection , 2006 .

[19]  Robert A. Laskin,et al.  Successful completion of SIM-PlanetQuest technology , 2006, SPIE Astronomical Telescopes + Instrumentation.

[20]  W. Becker,et al.  X-ray observations of RX J0822-4300 and Puppis-A , 2005, astro-ph/0508655.

[21]  Nrl,et al.  Getting Its Kicks: A VLBA Parallax for the Hyperfast Pulsar B1508+55 , 2005, astro-ph/0509031.

[22]  M. Brügmann Light deflection in the postlinear gravitational field of bounded pointlike masses , 2005 .

[23]  M. Sereno On gravitational lensing by deflectors in motion , 2005, astro-ph/0501605.

[24]  D. Heyrovský Velocity Effects on the Deflection of Light by Gravitational Microlenses , 2004, astro-ph/0410183.

[25]  O. Wucknitz,et al.  Deflection of light and particles by moving gravitational lenses , 2004, astro-ph/0401362.

[26]  S. Ragusa,et al.  CORRIGENDUM: Gravitational deflection of massive particles in classical and semiclassical general relativity , 2003 .

[27]  A. Bhadra Gravitational lensing by a charged black hole of string theory , 2003, gr-qc/0306016.

[28]  S. Klioner,et al.  Numerical simulations of the light propagation in the gravitational field of moving bodies , 2003, astro-ph/0305204.

[29]  S. Klioner Light propagation in the gravitational field of moving bodies by means of Lorentz transformation: I. Mass monopoles moving with constant velocities , 2003, astro-ph/0301573.

[30]  Astronomy,et al.  Determining Tangential Peculiar Velocities of Clusters of Galaxies Using Gravitational Lensing , 2002, astro-ph/0211227.

[31]  S. Frittelli,et al.  Fermat potentials for nonperturbative gravitational lensing , 2002, gr-qc/0205014.

[32]  Hideo Matsuhara,et al.  Japanese Astrometry Satellite Mission for Infrared Exploration , 2002 .

[33]  G. E. Romero,et al.  Reissner-Nordstrom black hole lensing , 2002, gr-qc/0203049.

[34]  B. Mashhoon,et al.  Gravitomagnetic effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary-moving and spinning bodies , 2001, gr-qc/0110101.

[35]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[36]  D. Backer,et al.  Proper Motion of the Compact, Nonthermal Radio Source in the Galactic Center, Sagittarius A* , 1999, astro-ph/9906048.

[37]  S. Capozziello,et al.  Higher order corrections in gravitational microlensing , 1999, astro-ph/9902373.

[38]  S. Kopeikin,et al.  Lorentz covariant theory of light propagation in gravitational fields of arbitrary moving bodies , 1999, gr-qc/9902030.

[39]  Jonathan E. Grindlay,et al.  Advection-dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center , 1997, astro-ph/9706112.

[40]  Reinhard Genzel,et al.  Stellar proper motions in the central 0.1 PC of the galaxy , 1997 .

[41]  G. Rieke,et al.  Stellar Kinematics and the Black Hole in the Galactic Center , 1996 .

[42]  M. Birkinshaw,et al.  Null Geodesics in Perturbed Spacetimes , 1993, astro-ph/9303020.

[43]  J. Cordes,et al.  The Guitar nebula: a bow shock from a slow-spin, high-velocity neutron star , 1993, Nature.

[44]  Irwin I. Shapiro,et al.  Post-post-Newtonian deflection of light by the Sun , 1980 .

[45]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[46]  P. C. Keenan,et al.  Spectral Classification of the High-Velocity Stars. , 1953 .