暂无分享,去创建一个
Mark A. Girolami | Anthony D. Kennedy | Alessandro Barp | François-Xavier Briol | A. Kennedy | M. Girolami | A. Barp | François-Xavier Briol | François‐Xavier Briol
[1] Andrew M. Stuart,et al. Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..
[2] George Casella,et al. A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data , 2008, 0808.2902.
[3] Scott S. Hampton,et al. Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules , 2004 .
[4] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[5] Nando de Freitas,et al. Adaptive Hamiltonian and Riemann manifold Monte Carlo samplers , 2013, ICML 2013.
[6] Scott S. Hampton,et al. A separable shadow Hamiltonian hybrid Monte Carlo method. , 2009, The Journal of chemical physics.
[7] Lawrence Carin,et al. On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators , 2015, NIPS.
[8] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[9] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[10] Tianqi Chen,et al. A Complete Recipe for Stochastic Gradient MCMC , 2015, NIPS.
[11] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[12] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[13] D. Stoyan,et al. Stochastic Geometry and Its Applications , 1989 .
[14] Mark A. Girolami,et al. Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian Inverse Problems , 2015, J. Comput. Phys..
[15] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[16] M. Girolami,et al. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo , 2014, 1407.1517.
[17] David Dunson,et al. Geometrically Tempered Hamiltonian Monte Carlo , 2016, 1604.00872.
[18] B. Berne,et al. Novel methods of sampling phase space in the simulation of biological systems. , 1997, Current opinion in structural biology.
[19] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[20] Tijana Radivojević,et al. Constant pressure hybrid Monte Carlo simulations in GROMACS , 2014, Journal of Molecular Modeling.
[21] K. Zygalakis,et al. (Non-) asymptotic properties of Stochastic Gradient Langevin Dynamics , 2015, 1501.00438.
[22] Ajay,et al. Can we learn to distinguish between "drug-like" and "nondrug-like" molecules? , 1998, Journal of medicinal chemistry.
[23] Ian L. Dryden,et al. Geometry driven statistics , 2015 .
[24] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[25] Assyr Abdulle,et al. Long Time Accuracy of Lie-Trotter Splitting Methods for Langevin Dynamics , 2015, SIAM J. Numer. Anal..
[26] Mrinal K. Sen,et al. Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm , 2017 .
[27] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[28] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[29] Michael Betancourt,et al. A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.
[30] Radford M. Neal,et al. ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .
[31] Tianqi Chen,et al. Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.
[32] Yee Whye Teh,et al. Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics , 2014, J. Mach. Learn. Res..
[33] Paul Marriott,et al. Preferred Point Geometry and Statistical Manifolds , 1993 .
[34] Jesús María Sanz-Serna,et al. Extra Chance Generalized Hybrid Monte Carlo , 2014, J. Comput. Phys..
[35] M. Girolami,et al. Markov Chain Monte Carlo from Lagrangian Dynamics , 2015, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[36] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[37] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[38] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[39] Paolo Rossi,et al. A Comparison of Numerical Algorithms for Dynamical Fermions , 1990 .
[40] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[41] J. M. Sanz-Serna,et al. Hybrid Monte Carlo on Hilbert spaces , 2011 .
[42] M. T. Vaughn. Geometry in Physics , 2008 .
[43] M. Girolami,et al. Geodesic Monte Carlo on Embedded Manifolds , 2013, Scandinavian journal of statistics, theory and applications.
[44] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[45] Sugar,et al. New algorithm for the numerical simulation of fermions. , 1986, Physical review. B, Condensed matter.
[46] M. Betancourt,et al. On the geometric ergodicity of Hamiltonian Monte Carlo , 2016, Bernoulli.
[47] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[48] A. Horowitz. A generalized guided Monte Carlo algorithm , 1991 .
[49] Benedict Leimkuhler,et al. Simulating Hamiltonian Dynamics: Acknowledgements , 2005 .
[50] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[51] J. M. Sanz-Serna,et al. Compressible generalized hybrid Monte Carlo. , 2014, The Journal of chemical physics.
[52] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[53] R. Kass,et al. Geometrical Foundations of Asymptotic Inference , 1997 .