Counterexamples in Chemical Ring Perception
暂无分享,去创建一个
Franziska Berger | Peter F. Stadler | Christoph Flamm | Josef Leydold | Petra M. Gleiss | J. Leydold | P. Stadler | C. Flamm | F. Berger
[1] Kenneth B. Wiberg,et al. Reactions of [1.1.1]propellane , 1990 .
[2] Dipl.-Chem. Detlef Wehle,et al. Heptacyclo[19.3.0.01,5.05,9.09,13.013,17.017,21]‐tetracosane([6.5]coronane) , 1987 .
[3] H. Whitney. 2-Isomorphic Graphs , 1933 .
[4] Wei-Kuan Shih,et al. A New Planarity Test , 1999, Theor. Comput. Sci..
[5] Shinsaku Fujita,et al. A new algorithm for selection of synthetically important rings. The essential set of essential rings for organic structures , 1988, J. Chem. Inf. Comput. Sci..
[6] Saunders Mac Lane,et al. A combinatorial condition for planar graphs , 1937 .
[7] John M. Barnard,et al. Chemical Similarity Searching , 1998, J. Chem. Inf. Comput. Sci..
[8] M. N. Shanmukha Swamy,et al. Graphs: Theory and Algorithms , 1992 .
[9] GEOFFREY M. DOWNS,et al. Computer storage and retrieval of generic chemical structures in patents. 9. An algorithm to find the extended set of smallest rings in structurally explicit generics , 1989, J. Chem. Inf. Comput. Sci..
[10] Michael F. Lynch,et al. Theoretical Aspects of Ring Perception and Development of the Extended Set of Smallest Rings Concept. , 1989 .
[11] John Figueras,et al. Ring Perception Using Breadth-First Search , 1996, J. Chem. Inf. Comput. Sci..
[12] K. Wagner. Bemerkungen zum Vierfarbenproblem. , 1936 .
[13] P. Vismara. Reconnaissance et représentation d'éléments structuraux pour la description d'objets complexes : application à l'élaboration de stratégies de synthèse en chimie organique , 1995 .
[14] Shinsaku Fujita. Logical perception of ring-opening, ring-closure, and rearrangement reactions based on imaginary transition structures. Selection of the essential set of essential rings (ESER) , 1988, J. Chem. Inf. Comput. Sci..
[15] Leo A. Paquette,et al. FACTORS CONDUCIVE TO THE CASCADE REARRANGEMENT OF STERICALLY CONGESTED AND GEOMETRICALLY RESTRICTED THREE-MEMBERED RINGS. FACILE SYNTHESIS OF A TOPOLOGICALLY NONPLANAR HETEROCYCLE , 1984 .
[16] Maciej M. Syslo,et al. An Efficient Cycle Vector Space Algorithm for Listing all Cycles of a Planar Graph , 1981, SIAM J. Comput..
[17] H. Whitney. Congruent Graphs and the Connectivity of Graphs , 1932 .
[18] Jiazhen Cai,et al. Counting Embeddings of Planar Graphs Using DFS Trees , 2018, SIAM J. Discret. Math..
[19] Renzo Balducci,et al. Efficient exact solution of the ring perception problem , 1994, J. Chem. Inf. Comput. Sci..
[20] Narsingh Deo,et al. Algorithms for Generating Fundamental Cycles in a Graph , 1982, TOMS.
[21] Philippe Vismara,et al. Union of all the Minimum Cycle Bases of a Graph , 1997, Electron. J. Comb..
[22] I. V. Stankevich,et al. On some carbon clusters containing sp2- and sp3-hybridized atoms , 1996 .
[23] Jay S. Siegel,et al. Design of Novel Aromatics using the Loschmidt Replacement on Graphs , 1999 .
[24] Thibaud Latour,et al. A New Graph Descriptor for Molecules Containing Cycles. Application as Screening Criterion for Searching Molecular Structures within Large Databases of Organic Compounds , 2001, J. Chem. Inf. Comput. Sci..
[25] H. Whitney. On the Abstract Properties of Linear Dependence , 1935 .
[26] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[27] A. Schuster,et al. Centrohexaindan, der erste Kohlenwasserstoff mit topologisch nicht‐planarer Molekülstruktur , 1988 .
[28] Dietmar Kuck,et al. CENTROHEXACYCLIC OR K5 MOLECULES : DEVELOPMENT OF A GROWING FAMILY OF TOPOLOGICALLY NONPLANAR ORGANIC COMPOUNDS , 1997 .
[29] S. E. Goodman,et al. An algorithm for the longest cycle problem , 1976, Networks.
[30] Steven A. Benner,et al. Rearrangement of a geometrically restricted triepoxide to the first topologically nonplanar molecule: a reaction path elucidated by using oxygen isotope effects on carbon-13 chemical shifts , 1981 .
[31] Egon L. Willighagen,et al. The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..
[32] Morris Plotkin,et al. Mathematical Basis of Ring-Finding Algorithms in CIDS , 1971 .
[33] Geoff M. Downs. Rings — The Importance of Being Perceived , 1993 .
[34] Miguel Ángel Gómez-Nieto,et al. Parallel Algorithms for Graph Cycle Extraction Using the Cyclical Conjunction Operator , 2002, J. Chem. Inf. Comput. Sci..
[35] David Hartvigsen,et al. Cycle bases from orderings and coverings , 1991, Discret. Math..
[36] H. Voss. Cycles and Bridges in Graphs , 1991 .
[37] Michael F. Lynch,et al. Computer storage and retrieval of generic chemical structures in patents, 1. Introduction and general strategy , 1981, J. Chem. Inf. Comput. Sci..
[38] Leo A. Paquette,et al. Factors conducive to the cascade rearrangement of sterically congested and geometrically restricted three-membered rings ― Facile synthesis of a topologically nonplanar heterocycle , 1984 .
[39] David Hartvigsen,et al. The All-Pairs Min Cut Problem and the Minimum Cycle Basis Problem on Planar Graphs , 1994, SIAM J. Discret. Math..
[40] Irene Luque Ruiz,et al. Cyclical Conjunction: An Efficient Operator for the Extraction of Cycles from a Graph , 2002, J. Chem. Inf. Comput. Sci..
[41] Joseph Douglas Horton,et al. A Polynomial-Time Algorithm to Find the Shortest Cycle Basis of a Graph , 1987, SIAM J. Comput..
[42] Kim K. Baldridge,et al. Synthesis and Structure of the Nanodimensional Multicyclophane “Kuratowski Cyclophane”, an Achiral Molecule with Nonplanar K3,3 Topology , 1996 .
[43] Ugur Dogrusöz,et al. Enumerating all Cycles of a Planar Graph , 1996, Parallel Algorithms Appl..
[44] Paul C. Kainen. On robust cycle bases , 2002, Electron. Notes Discret. Math..
[45] Petra Mutzel,et al. Optimizing over All Combinatorial Embeddings of a Planar Graph , 1999, IPCO.
[46] J. Köbler,et al. The Graph Isomorphism Problem: Its Structural Complexity , 1993 .
[47] Takao Nishizeki,et al. Planar Graphs: Theory and Algorithms , 1988 .
[48] Michael F. Lynch,et al. Review of Ring Perception Algorithms for Chemical Graphs. , 1989 .
[49] Peter F. Stadler,et al. Minimal Cycle Bases of Outerplanar Graphs , 1998, Electron. J. Comb..
[50] Joseph Douglas Horton,et al. A Polynomial Time Algorithm to Find the Minimum Cycle Basis of a Regular Matroid , 2002, SWAT.
[51] Eitan Zemel,et al. Is every cycle basis fundamental? , 1989, J. Graph Theory.
[52] Christophe Champetier. On the null-homotopy of graphs , 1987, Discret. Math..
[53] Thierry Hanser,et al. A New Algorithm for Exhaustive Ring Perception in a Molecular Graph , 1996, J. Chem. Inf. Comput. Sci..
[54] D F Gaines,et al. Hydrogen-deuterium exchange in decaborane(14): mechanistic studies. , 2000, Inorganic chemistry.
[55] Maciej M. Syslo,et al. Characterizations of outerplanar graphs , 1979, Discret. Math..
[56] Seymour B. Elk. Derivation of the principle of smallest set of smallest rings from Euler's polyhedron equation and a simplified technique for finding this set , 1984, J. Chem. Inf. Comput. Sci..
[57] Peter F. Stadler,et al. Interchangeability of Relevant Cycles in Graphs , 2000, Electron. J. Comb..
[58] Dietmar Kuck,et al. Extending the Chemistry of [5.5.5.5]Fenestranes − Eightfold Peripheral Functionalization of Fenestrindanes , 2001 .
[59] Yoshimasa Takahashi,et al. Automatic extraction of ring substructures from a chemical structure , 1994, J. Chem. Inf. Comput. Sci..
[60] Norishige Chiba,et al. A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..
[61] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[62] Sven de Vries,et al. Minimum Cycle Bases for Network Graphs , 2004, Algorithmica.
[63] P. Kollman,et al. Encyclopedia of computational chemistry , 1998 .