Counterexamples in Chemical Ring Perception

Ring information is a large part of the structural topology used to identify and characterize molecular structures. It is hence of crucial importance to obtain this information for a variety of tasks in computational chemistry. Many different approaches for "ring perception", i.e., the extraction of cycles from a molecular graph, have been described. The chemistry literature on this topic, however, reports a surprisingly large number of incorrect statements about the properties of chemically relevant ring sets and, in particular, about the mutual relationships of different sets of cycles in a graph. In part these problems seem to have arisen from a sometimes rather idiosyncratic terminology for notions that are fairly standard in graph theory. In this contribution we translate the definitions of concepts such as the Smallest Set of Smallest Rings, Essential Set of Essential Rings, Extended Set of Smallest Rings, Set of Smallest Cycles at Edges, Set of Elementary Rings, K-rings, and beta-rings into a more widely used mathematical language. We then outline the basic properties of different cycle sets and provide numerous counterexamples to incorrect claims in the published literature. These counterexamples may have a serious practical impact because at least some of them are molecular graphs of well-known molecules. As a consequence, we propose a catalog of desirable properties for chemically useful sets of rings.

[1]  Kenneth B. Wiberg,et al.  Reactions of [1.1.1]propellane , 1990 .

[2]  Dipl.-Chem. Detlef Wehle,et al.  Heptacyclo[19.3.0.01,5.05,9.09,13.013,17.017,21]‐tetracosane([6.5]coronane) , 1987 .

[3]  H. Whitney 2-Isomorphic Graphs , 1933 .

[4]  Wei-Kuan Shih,et al.  A New Planarity Test , 1999, Theor. Comput. Sci..

[5]  Shinsaku Fujita,et al.  A new algorithm for selection of synthetically important rings. The essential set of essential rings for organic structures , 1988, J. Chem. Inf. Comput. Sci..

[6]  Saunders Mac Lane,et al.  A combinatorial condition for planar graphs , 1937 .

[7]  John M. Barnard,et al.  Chemical Similarity Searching , 1998, J. Chem. Inf. Comput. Sci..

[8]  M. N. Shanmukha Swamy,et al.  Graphs: Theory and Algorithms , 1992 .

[9]  GEOFFREY M. DOWNS,et al.  Computer storage and retrieval of generic chemical structures in patents. 9. An algorithm to find the extended set of smallest rings in structurally explicit generics , 1989, J. Chem. Inf. Comput. Sci..

[10]  Michael F. Lynch,et al.  Theoretical Aspects of Ring Perception and Development of the Extended Set of Smallest Rings Concept. , 1989 .

[11]  John Figueras,et al.  Ring Perception Using Breadth-First Search , 1996, J. Chem. Inf. Comput. Sci..

[12]  K. Wagner Bemerkungen zum Vierfarbenproblem. , 1936 .

[13]  P. Vismara Reconnaissance et représentation d'éléments structuraux pour la description d'objets complexes : application à l'élaboration de stratégies de synthèse en chimie organique , 1995 .

[14]  Shinsaku Fujita Logical perception of ring-opening, ring-closure, and rearrangement reactions based on imaginary transition structures. Selection of the essential set of essential rings (ESER) , 1988, J. Chem. Inf. Comput. Sci..

[15]  Leo A. Paquette,et al.  FACTORS CONDUCIVE TO THE CASCADE REARRANGEMENT OF STERICALLY CONGESTED AND GEOMETRICALLY RESTRICTED THREE-MEMBERED RINGS. FACILE SYNTHESIS OF A TOPOLOGICALLY NONPLANAR HETEROCYCLE , 1984 .

[16]  Maciej M. Syslo,et al.  An Efficient Cycle Vector Space Algorithm for Listing all Cycles of a Planar Graph , 1981, SIAM J. Comput..

[17]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[18]  Jiazhen Cai,et al.  Counting Embeddings of Planar Graphs Using DFS Trees , 2018, SIAM J. Discret. Math..

[19]  Renzo Balducci,et al.  Efficient exact solution of the ring perception problem , 1994, J. Chem. Inf. Comput. Sci..

[20]  Narsingh Deo,et al.  Algorithms for Generating Fundamental Cycles in a Graph , 1982, TOMS.

[21]  Philippe Vismara,et al.  Union of all the Minimum Cycle Bases of a Graph , 1997, Electron. J. Comb..

[22]  I. V. Stankevich,et al.  On some carbon clusters containing sp2- and sp3-hybridized atoms , 1996 .

[23]  Jay S. Siegel,et al.  Design of Novel Aromatics using the Loschmidt Replacement on Graphs , 1999 .

[24]  Thibaud Latour,et al.  A New Graph Descriptor for Molecules Containing Cycles. Application as Screening Criterion for Searching Molecular Structures within Large Databases of Organic Compounds , 2001, J. Chem. Inf. Comput. Sci..

[25]  H. Whitney On the Abstract Properties of Linear Dependence , 1935 .

[26]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[27]  A. Schuster,et al.  Centrohexaindan, der erste Kohlenwasserstoff mit topologisch nicht‐planarer Molekülstruktur , 1988 .

[28]  Dietmar Kuck,et al.  CENTROHEXACYCLIC OR K5 MOLECULES : DEVELOPMENT OF A GROWING FAMILY OF TOPOLOGICALLY NONPLANAR ORGANIC COMPOUNDS , 1997 .

[29]  S. E. Goodman,et al.  An algorithm for the longest cycle problem , 1976, Networks.

[30]  Steven A. Benner,et al.  Rearrangement of a geometrically restricted triepoxide to the first topologically nonplanar molecule: a reaction path elucidated by using oxygen isotope effects on carbon-13 chemical shifts , 1981 .

[31]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[32]  Morris Plotkin,et al.  Mathematical Basis of Ring-Finding Algorithms in CIDS , 1971 .

[33]  Geoff M. Downs Rings — The Importance of Being Perceived , 1993 .

[34]  Miguel Ángel Gómez-Nieto,et al.  Parallel Algorithms for Graph Cycle Extraction Using the Cyclical Conjunction Operator , 2002, J. Chem. Inf. Comput. Sci..

[35]  David Hartvigsen,et al.  Cycle bases from orderings and coverings , 1991, Discret. Math..

[36]  H. Voss Cycles and Bridges in Graphs , 1991 .

[37]  Michael F. Lynch,et al.  Computer storage and retrieval of generic chemical structures in patents, 1. Introduction and general strategy , 1981, J. Chem. Inf. Comput. Sci..

[38]  Leo A. Paquette,et al.  Factors conducive to the cascade rearrangement of sterically congested and geometrically restricted three-membered rings ― Facile synthesis of a topologically nonplanar heterocycle , 1984 .

[39]  David Hartvigsen,et al.  The All-Pairs Min Cut Problem and the Minimum Cycle Basis Problem on Planar Graphs , 1994, SIAM J. Discret. Math..

[40]  Irene Luque Ruiz,et al.  Cyclical Conjunction: An Efficient Operator for the Extraction of Cycles from a Graph , 2002, J. Chem. Inf. Comput. Sci..

[41]  Joseph Douglas Horton,et al.  A Polynomial-Time Algorithm to Find the Shortest Cycle Basis of a Graph , 1987, SIAM J. Comput..

[42]  Kim K. Baldridge,et al.  Synthesis and Structure of the Nanodimensional Multicyclophane “Kuratowski Cyclophane”, an Achiral Molecule with Nonplanar K3,3 Topology , 1996 .

[43]  Ugur Dogrusöz,et al.  Enumerating all Cycles of a Planar Graph , 1996, Parallel Algorithms Appl..

[44]  Paul C. Kainen On robust cycle bases , 2002, Electron. Notes Discret. Math..

[45]  Petra Mutzel,et al.  Optimizing over All Combinatorial Embeddings of a Planar Graph , 1999, IPCO.

[46]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[47]  Takao Nishizeki,et al.  Planar Graphs: Theory and Algorithms , 1988 .

[48]  Michael F. Lynch,et al.  Review of Ring Perception Algorithms for Chemical Graphs. , 1989 .

[49]  Peter F. Stadler,et al.  Minimal Cycle Bases of Outerplanar Graphs , 1998, Electron. J. Comb..

[50]  Joseph Douglas Horton,et al.  A Polynomial Time Algorithm to Find the Minimum Cycle Basis of a Regular Matroid , 2002, SWAT.

[51]  Eitan Zemel,et al.  Is every cycle basis fundamental? , 1989, J. Graph Theory.

[52]  Christophe Champetier On the null-homotopy of graphs , 1987, Discret. Math..

[53]  Thierry Hanser,et al.  A New Algorithm for Exhaustive Ring Perception in a Molecular Graph , 1996, J. Chem. Inf. Comput. Sci..

[54]  D F Gaines,et al.  Hydrogen-deuterium exchange in decaborane(14): mechanistic studies. , 2000, Inorganic chemistry.

[55]  Maciej M. Syslo,et al.  Characterizations of outerplanar graphs , 1979, Discret. Math..

[56]  Seymour B. Elk Derivation of the principle of smallest set of smallest rings from Euler's polyhedron equation and a simplified technique for finding this set , 1984, J. Chem. Inf. Comput. Sci..

[57]  Peter F. Stadler,et al.  Interchangeability of Relevant Cycles in Graphs , 2000, Electron. J. Comb..

[58]  Dietmar Kuck,et al.  Extending the Chemistry of [5.5.5.5]Fenestranes − Eightfold Peripheral Functionalization of Fenestrindanes , 2001 .

[59]  Yoshimasa Takahashi,et al.  Automatic extraction of ring substructures from a chemical structure , 1994, J. Chem. Inf. Comput. Sci..

[60]  Norishige Chiba,et al.  A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..

[61]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[62]  Sven de Vries,et al.  Minimum Cycle Bases for Network Graphs , 2004, Algorithmica.

[63]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .