Functional MRI mapping of dynamic visual features during natural viewing in the macaque

[1]  Ivo D. Popivanov,et al.  Heterogeneous Single-Unit Selectivity in an fMRI-Defined Body-Selective Patch , 2014, The Journal of Neuroscience.

[2]  G. Orban,et al.  Functional mapping of motion regions in human and non-human primates , 2014 .

[3]  Doris Y. Tsao,et al.  Faces in Motion: Selectivity of Macaque and Human Face Processing Areas for Dynamic Stimuli , 2013, The Journal of Neuroscience.

[4]  M. Corbetta,et al.  Evolutionarily Novel Functional Networks in the Human Brain? , 2013, The Journal of Neuroscience.

[5]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[6]  Jack L. Gallant,et al.  A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain , 2012, Neuron.

[7]  Ning Liu,et al.  Dynamic and Static Facial Expressions Decoded from Motion-Sensitive Areas in the Macaque Monkey , 2012, The Journal of Neuroscience.

[8]  Victor A. F. Lamme,et al.  Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories , 2012, PLoS Comput. Biol..

[9]  Guy A. Orban,et al.  Integration of shape and motion cues in biological motion processing in the monkey STS , 2012, NeuroImage.

[10]  M. Corbetta,et al.  Inter-species activity correlations reveal functional correspondences between monkey and human brain areas , 2012, Nature Methods.

[11]  S. Garrod,et al.  Brain-to-brain coupling: a mechanism for creating and sharing a social world , 2012, Trends in Cognitive Sciences.

[12]  Andreas Bartels,et al.  Visual Motion Responses in the Posterior Cingulate Sulcus: A Comparison to V5/MT and MST , 2011, Cerebral cortex.

[13]  L. Parr,et al.  The evolution of face processing in primates , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  Leslie G. Ungerleider,et al.  Uncovering the visual “alphabet”: Advances in our understanding of object perception , 2011, Vision Research.

[15]  G. Rhodes,et al.  A comparative view of face perception. , 2010, Journal of comparative psychology.

[16]  Asif A. Ghazanfar,et al.  Human-Monkey Gaze Correlations Reveal Convergent and Divergent Patterns of Movie Viewing , 2010, Current Biology.

[17]  D. Sheinberg,et al.  Temporal Cortex Neurons Encode Articulated Actions as Slow Sequences of Integrated Poses , 2010, The Journal of Neuroscience.

[18]  Arnold W. M. Smeulders,et al.  A Biologically Plausible Model for Rapid Natural Scene Identification , 2009, NIPS.

[19]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[20]  Arnold W. M. Smeulders,et al.  Brain responses strongly correlate with Weibull image statistics when processing natural images. , 2009, Journal of vision.

[21]  Leslie G. Ungerleider,et al.  Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. , 2009, Journal of neurophysiology.

[22]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[23]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[24]  Christopher J. Aura,et al.  Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey , 2008, Nature Neuroscience.

[25]  Doris Y. Tsao,et al.  Patches of face-selective cortex in the macaque frontal lobe , 2008, Nature Neuroscience.

[26]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.

[27]  N. Logothetis,et al.  Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. , 2008, Cerebral cortex.

[28]  Andrew D. Engell,et al.  Facial expression and gaze-direction in human superior temporal sulcus , 2007, Neuropsychologia.

[29]  T. Matsuka,et al.  Bottom-up and top-down brain functional connectivity underlying comprehension of everyday visual action , 2007, Brain Structure and Function.

[30]  F. Ye,et al.  Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE) , 2007, Magnetic resonance in medicine.

[31]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[32]  G. Orban,et al.  Charting the Lower Superior Temporal Region, a New Motion-Sensitive Region in Monkey Superior Temporal Sulcus , 2006, The Journal of Neuroscience.

[33]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[34]  L. Itti Author address: , 1999 .

[35]  Andreas Bartels,et al.  Brain dynamics during natural viewing conditions—A new guide for mapping connectivity in vivo , 2005, NeuroImage.

[36]  Leslie G. Ungerleider,et al.  Visual responses to targets and distracters by inferior temporal neurons after lesions of extrastriate areas V4 and TEO , 2004, Neuroreport.

[37]  R. Malach,et al.  Intersubject Synchronization of Cortical Activity During Natural Vision , 2004, Science.

[38]  S. Zeki,et al.  Functional brain mapping during free viewing of natural scenes , 2004, Human brain mapping.

[39]  Katalin M. Gothard,et al.  How do rhesus monkeys (Macaca mulatta) scan faces in a visual paired comparison task? , 2004, Animal Cognition.

[40]  J. Haxby,et al.  fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects , 2003, Journal of Cognitive Neuroscience.

[41]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[42]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  Anders M. Dale,et al.  Repeated fMRI Using Iron Oxide Contrast Agent in Awake, Behaving Macaques at 3 Tesla , 2002, NeuroImage.

[44]  David L. Sheinberg,et al.  Noticing Familiar Objects in Real World Scenes: The Role of Temporal Cortical Neurons in Natural Vision , 2001, The Journal of Neuroscience.

[45]  J. Maunsell,et al.  Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing , 2000, Nature Neuroscience.

[46]  D. Perrett,et al.  Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. , 1996, Journal of neurophysiology.

[47]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[48]  J H Maunsell,et al.  Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[50]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[51]  N. Logothetis,et al.  Role of the color-opponent and broad-band channels in vision , 1990, Visual Neuroscience.

[52]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[54]  S. Schein,et al.  Mapping of retinal and geniculate neurons onto striate cortex of macaque , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[56]  R. Andersen Ocolomotor adaptation: adaptive mehans in gaze control. , 1985, Science.

[57]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[58]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[60]  D. B. Bender,et al.  Activity of inferior temporal neurons in behaving monkeys , 1979, Neuropsychologia.

[61]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.