Comparison of methods for calculating stress intensity factors with quarter-point elements

The quarter-point quadrilateral element is employed with various methods for calculating the stress intensity factor in order to provide guidelines for a “best” method. These methods include displacement extrapolation, J-integral and Griffith's energy calculations, and the stiffness derivative technique. Three geometries are considered: a central crack, a single edge crack and double edge cracks in a rectangular sheet. For these cases, it is observed that the stiffness derivative method yields the most accurate results, whereas displacement extrapolation is the easiest method to implement and still yields reasonable accuracy.RésuméOn utilise les éléments en quadrilatère quart point dans diverses méthodes de calcul du facteur d'intensité de contrainte, afin de servir de guide pour le choix de la meilleure méthode. Il s'agit notamment des méthodes par extrapolation des déplacements, par calcul d'intégrale J ou d'énergie de Griffith, et par dérivée de la raideur. On considère trois géométries: une fissure centrale, une fissure de bord simple et deux fissures de bord dans une feuille rectangulaire. On observe pour ces trois cas que la méthode de la dérivée de la raideur conduit aux résultats les plus précis; par ailleurs, la méthode d'extrapolation des déplacements est la plus aisée à mettre en oeuvre et conduit néanmoins à une raisonnable exactitude.

[1]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[2]  T. K. Hellen,et al.  On special isoparametric elements for linear elastic fracturemechanics: A discussion of papers by E. D. Henshell , 1977 .

[3]  M. German,et al.  Crack extension modeling with singular quadratic isoparametric elements , 1976 .

[4]  Leslie Banks-Sills,et al.  Reappraisal of the quarter-point quadrilateral element in linear elastic fracture mechanics , 1984 .

[5]  Anthony R. Ingraffea,et al.  Transition elements to be used with quarter-point crack-tip elements , 1978 .

[6]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[7]  W. K. Wilson Finite element methods for elastic bodies containing cracks , 1973 .

[8]  S. Chan,et al.  On the Finite Element Method in Linear Fracture Mechanics , 1970 .

[9]  D. M. Parks A stiffness derivative finite element technique for determination of crack tip stress intensity factors , 1974 .

[10]  R. Barsoum Application of quadratic isoparametric finite elements in linear fracture mechanics , 1974 .

[11]  A. R. Luxmoore,et al.  An assessment of crack tip singularity models for use with isoparametric elements , 1979 .

[12]  Leslie Banks-Sills,et al.  On singular, nine-noded, distorted, isoparametric elements in linear elastic fracture mechanics , 1987 .

[13]  J. M. Bloom,et al.  An evaluation of a new crack tip element—the distorted 8-node isoparametric element , 1975 .

[14]  O. L. Bowie Rectangular Tensile Sheet With Symmetric Edge Cracks , 1964 .

[15]  M. Isida Effect of width and length on stress intensity factors of internally cracked plates under various boundary conditions , 1971 .

[16]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[17]  J. Z. Zhu,et al.  The finite element method , 1977 .

[18]  J. Altenbach Zienkiewicz, O. C., The Finite Element Method. 3. Edition. London. McGraw‐Hill Book Company (UK) Limited. 1977. XV, 787 S. , 1980 .