The Causal and Explanatory Role of Information Stored in Connectionist Networks

In this paper I defend the propriety of explaining the behavior of distributed connectionist networks by appeal to selected data stored therein. In particular, I argue that if there is a problem with such explanations, it is a consequence of the fact that information storage in networks is superpositional, and not because it is distributed. I then develop a “proto-account” of causation for networks, based on an account of Andy Clark's, that shows even superpositionality does not undermine information-based explanation. Finally, I argue that the resulting explanations are genuinely informative and not vacuous.