Wavelet probing for compression-based segmentation

In this paper we show how wavelets can be used for data segmentation. The basic idea is to split the data into smooth segments that can be compressed separately. A fast algorithm that uses wavelets on closed sets and wavelet probing is presented.

[1]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[2]  Azriel Rosenfeld,et al.  Computer vision and image processing , 1992 .

[3]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[4]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Yves Meyer,et al.  Size properties of wavelet packets , 1992 .

[6]  Renaud J. Di Francesco Real-time speech segmentation using pitch and convexity jump models: application to variable rate speech coding , 1990, IEEE Trans. Acoust. Speech Signal Process..

[7]  Mari Ostendorf,et al.  Fast algorithms for phone classification and recognition using segment-based models , 1992, IEEE Trans. Signal Process..

[8]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[9]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Stéphane Mallat,et al.  Zero-crossings of a wavelet transform , 1991, IEEE Trans. Inf. Theory.

[11]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[12]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[13]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[14]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .