A tile service-driven architecture for online climate analysis with an application to estimation of ocean carbon flux

Abstract The deteriorating environmental system and increasing number of time-varying datasets have generated a significant demand for new techniques to support online high-efficiency climate analysis. In response to this demand, this paper introduces an innovative multilayer architecture driven by a tile service in a virtual globe environment. This architecture is supported by the open-source and highly efficient osgEarth virtual globe. In addition, we develop a gSoap-based tile service to address the challenges of visualizing and analysing massive data under hardware restrictions conditions. The service contains a lossless pyramid tile set that can automatically provide tiles with proper accuracy according to the demands of users under different conditions. Furthermore, we add a hybrid database file system to the service for high availability. This service is then applied for estimation of ocean carbon flux. And a proof-of-concept prototype, SatCO2, has been developed to demonstrate the feasibility and performance of the proposed architecture.

[1]  David S. Ebert,et al.  A New Three-Dimensional Visualization System for Combining Aircraft and Radar Data and Its Application to RICO Observations , 2010 .

[2]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .

[3]  Nasa Climate change: How do we know? , 2012 .

[4]  David Salomon,et al.  Data Compression: The Complete Reference , 2006 .

[5]  Jianhua Gong,et al.  Visualizing and analyzing dynamic meteorological data with virtual globes: A case study of tropical cyclones , 2015, Environ. Model. Softw..

[6]  Liang Lu Development of an Integrated Software Platform for Global Mapping and Analysis , 2011 .

[7]  Frank J. Millero,et al.  International one-atmosphere equation of state of seawater , 1981 .

[8]  Chaowei Phil Yang,et al.  Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes , 2011, Comput. Geosci..

[9]  Pat Hanrahan,et al.  Hierarchical splatting: a progressive refinement algorithm for volume rendering , 1991, SIGGRAPH.

[10]  A. Haines Climate change and health: strengthening the evidence base for policy. , 2008, American journal of preventive medicine.

[11]  John L. Dwyer,et al.  Landsat: building a strong future , 2012 .

[12]  Ming Li,et al.  An open-source 3D solar radiation model integrated with a 3D Geographic Information System , 2015, Environ. Model. Softw..

[13]  Wei Meng Lee,et al.  Simple Object Access Protocol (SOAP) and Web Services , 2002 .

[14]  S. Doney,et al.  The Effect of Using Time‐Averaged Winds on Regional Air‐Sea CO2 Fluxes , 2013 .

[15]  Jianhua Gong,et al.  Graphics processing unit-based dynamic volume rendering for typhoons on a virtual globe , 2015, Int. J. Digit. Earth.

[16]  Yansen Wang,et al.  Integration of Google Maps/Earth with microscale meteorology models and data visualization , 2013, Comput. Geosci..

[17]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[18]  Xuesong Zhang,et al.  Geospatial visualization of global satellite images with Vis-EROS , 2011, Environ. Model. Softw..

[19]  Qing Liu,et al.  A cloud-enabled remote visualization tool for time-varying climate data analytics , 2016, Environ. Model. Softw..

[20]  Ryan A. Rossi,et al.  A Scalable Image Processing Framework for gigapixel Mars and other celestial body images , 2010, 2010 IEEE Aerospace Conference.

[21]  Shupeng Chen,et al.  Digital Earth in support of global change research , 2008, Int. J. Digit. Earth.

[22]  Youngseok Lee,et al.  Toward scalable internet traffic measurement and analysis with Hadoop , 2013, CCRV.

[23]  David S. Ebert,et al.  An Atmospheric Visual Analysis and Exploration System , 2006, IEEE Transactions on Visualization and Computer Graphics.

[24]  Peter Schlosser,et al.  Measurements of air‐sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations , 2006 .

[25]  Don W. Vasco,et al.  Satellite‐based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide , 2010 .

[26]  George Chang,et al.  Leveraging the cloud for robust and efficient lunar image processing , 2011, 2011 Aerospace Conference.

[27]  Pierre Soille,et al.  A versatile data-intensive computing platform for information retrieval from big geospatial data , 2018, Future Gener. Comput. Syst..

[28]  Djamchid Ghazanfarpour,et al.  A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics , 2011, Comput. Graph. Forum.

[29]  Wenwen Li,et al.  PolarGlobe: A web-wide virtual globe system for visualizing multidimensional, time-varying, big climate data , 2017, Int. J. Geogr. Inf. Sci..

[30]  Wade R. McGillis,et al.  A cubic relationship between air‐sea CO2 exchange and wind speed , 1999 .

[31]  Ming Cao,et al.  A virtual globe-based three-dimensional dynamic visualization method for gas diffusion , 2019, Environ. Model. Softw..

[32]  Jianhua Gong,et al.  Visualizing 3D atmospheric data with spherical volume texture on virtual globes , 2014, Comput. Geosci..

[33]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[34]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[35]  Kenneth Steiglitz,et al.  Operations on Images Using Quad Trees , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  B. Fortner,et al.  HDF : THE HIERARCHICAL DATA FORMAT , 1998 .

[37]  F. Millero Thermodynamics of the carbon dioxide system in the oceans , 1995 .

[38]  Fabiana Piccoli,et al.  Estimation of Volume Rendering Efficiency with GPU in a Parallel Distributed Environment , 2013, ICCS.

[39]  C. Sweeney,et al.  Constraining global air‐sea gas exchange for CO2 with recent bomb 14C measurements , 2007 .

[40]  Cristina Milesi,et al.  Collaborative Supercomputing for Global Change Science , 2011 .

[41]  Jonathan A. Patz,et al.  Emerging Threats to Human Health from Global Environmental Change , 2009 .

[42]  David M. Mark,et al.  Next-Generation Digital Earth: A position paper from the Vespucci Initiative for the Advancement of Geographic Information Science , 2008, Int. J. Spatial Data Infrastructures Res..

[43]  Zhenhong Du,et al.  Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering , 2015, Comput. Geosci..

[44]  R. Wanninkhof Relationship between wind speed and gas exchange over the ocean , 1992 .

[45]  Le Yu,et al.  Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives , 2012 .

[46]  John S. Kimball,et al.  Effects of spatial and temporal climatic variability on terrestrial carbon and water fluxes in the Pacific Northwest, USA , 2014, Environ. Model. Softw..