A quadratic finite volume element method for parabolic problems on quadrilateral meshes

In this paper we utilize affine biquadratic elements and a two-step temporal discretization to develop a finite volume element method for parabolic problems on quadrilateral meshes. The method is proved to have an optimal order convergence rate in L2(0,T; H1(Ω)) under the ‘asymptotically parallelogram’ mesh assumption. Numerical experiments that corroborate the theoretical analysis are also presented.

[1]  Jinchao Xu,et al.  Analysis of linear and quadratic simplicial finite volume methods for elliptic equations , 2009, Numerische Mathematik.

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  E. Süli,et al.  The accuracy of cell vertex finite volume methods on quadrilateral meshes , 1992 .

[4]  So-Hsiang Chou,et al.  On the regularity and uniformness conditions on quadrilateral grids , 2002 .

[5]  Serge Nicaise,et al.  Convergence analysis of a finite volume method for the Stokes system using non-conforming arguments , 2005 .

[6]  Jim Douglas,et al.  Development and Analysis of Higher Order Finite Volume Methods over Rectangles for Elliptic Equations , 2003, Adv. Comput. Math..

[7]  Min Yang A second-order finite volume element method on quadrilateral meshes for elliptic equations , 2006 .

[8]  F. Liebau,et al.  The finite volume element method with quadratic basis functions , 1996, Computing.

[9]  Jürgen Geiser,et al.  Error estimates for finite volume element methods for convection-diffusion-reaction equations , 2007 .

[10]  Ronghua Li Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods , 2000 .

[11]  Michael Plexousakis,et al.  On the Construction and Analysis of High Order Locally Conservative Finite Volume-Type Methods for One-Dimensional Elliptic Problems , 2004, SIAM J. Numer. Anal..

[12]  Qian Li,et al.  Error estimates in L2, H1 and Linfinity in covolume methods for elliptic and parabolic problems: A unified approach , 1999, Math. Comput..

[13]  D. Rose,et al.  Some errors estimates for the box method , 1987 .

[14]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[15]  Xiu Ye,et al.  A Discontinuous Finite Volume Method for the Stokes Problems , 2006, SIAM J. Numer. Anal..

[16]  Barbara Wohlmuth,et al.  Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D , 2007 .

[17]  Do Y. Kwak,et al.  Lp error estimates and superconvergence for covolume or finite volume element methods , 2003 .

[18]  K. Morton On the Analysis of Finite Volume Methods for Evolutionary Problems , 1998 .

[19]  H. Rui Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems , 2002 .

[20]  Stanimire Tomov,et al.  Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..

[22]  Richard E. Ewing,et al.  Superconvergence of Mixed Finite Element Approximations over Quadrilaterals , 1993 .

[23]  Chuanjun Chen,et al.  Error estimation of a quadratic finite volume method on right quadrangular prism grids , 2009 .

[24]  Wolfgang Hackbusch,et al.  On first and second order box schemes , 1989, Computing.

[25]  V. Thomée,et al.  Error estimates for a finite volume element method for parabolic equations in convex polygonal domains , 2004 .

[26]  Shi Shu,et al.  Symmetric finite volume discretizations for parabolic problems , 2003 .

[27]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[28]  H. Joachim Schroll,et al.  A Bi–Hyperbolic Finite Volume Method on Quadrilateral Meshes , 2006, J. Sci. Comput..